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CHAPTER I

INTRODUCTION

0

1.1 Introduction

re

Industrial robots which are defined as computer controlled

A

o

- mechanical manipulators have become increasingly important in

N industrial automation in recent years. They can be programmed to

perform the tasks, without human intervention, of arc welding,

%3 paint spraying, assembly, foundary operation, etc.

. A manipulator can be described as a series of links

" connected at joints. Typically, they have three to six joints

e (three to six degrees of freedom) with a gripper or end effector.
o Ea;h joint i; driven by an actuator which is connected to sensing
! devices.

- The control system design for robot manipulators is

a& basically the problem of controlling a multi-input nonlinear

- system. The general objective is to achieve a very accurate, fast

and smooth tracking while rejecting & broad class of disturbances,

:’ including parameter variations,

- The simplest form of control used for manipulators is the
Ef open loop control ([1]-[3]), where the entire input sequence is

:' predetermined and is applied regardless of any errors which

i develop. The trajectory is preplanned or prerecorded and the

.
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inputs do not depend on output measurements. Disturbance rejection
and accurate path tracking can only be achieved by making the robot
extremely rigid. This approach which is comonly used today implies
precise gear trains and actuators as well as very strong structural
members. The speed of such systems is generally limited by the
force-producing capacity and speed of the actuators, and by the
excitation of high-frequency structural modes of the linkage.

Linear feedback controls have also been designed for
manipulators. The most widely used method is the independent joiat
control ([4],[5]), where basically each joint is independently
controlled by a linear PD controller. Gravity compensation is also
provided. The 'computed torque' technique is an illustration of
the independent joint control. We will present it in detail in
chapter IV.

A pseudo-linear feedback law with nonlinear pre- and post-
processing of measurements was developed by Raibert and Craig [6].
In practice, this kind of linear control is easy to implement,
works relatively well and is reliable. However, adequate
disturbance accommodation requires high-power actuators and this
technique becomes legs effective when high speed and ;ccurate
tracking are required.

In order to improve performances (speed, accuracy,
transient response, etc.), more sophisticated methods have been
developed in recent years.

Adaptive control schemes based on the model reference

principle have been proposed ([7)-[9]). Lee and Chung [10]
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presented an adaptive control based on the first order

linearization of the nonlinear dynamic equations. In general,

these adaptive strategies are characterized by complex algorithms

- . = oy

=]

which may lead to complexity comparable to that required for real

‘O
"

% time computation of inverse kinematics.
J &
Nonlinear feedback laws have also been proposed by many i
o
T
8§ authors ([11],(12]). Young (13] used sliding mode theory to w
N develop nonlinear switching feedbacks. =
R
i) Since the mid-1970's, the technique of linearizing a "
I

nonlinear system via nonlinear feedbacks has been used and \

[ 73

developed into what is known today as 'differential geometric .
:3 control theory' ([14]-{25]). The earlier work (1976) was conducted K
~ 5
by Hemami and Camano (21] who applied this technique to a simple W,

g
I 14

locomotion system which resulted in uncoupled subsystems. In 1982,

(

. Freund ([22] through a 'global nonlinear feedback law' obtained ::
- L)
c. (%t
o uncoupled second order systems., This method is based on N,
. . . '\

" partitioning the robot dynamic equations. But one drawback of this r
w h
‘ method is that the number of inputs should equal the number of K
-3' outputs ’

-
y

Recently, a theorem giving necessary and sufficient

Ay ‘
~ ) . .
~ conditions to linearize a nonlinear system via a coordinate N
“ transformation and nonlinear feedbacks has been given. This result :j
la
v N
oz is due in part to Brockett (23], Jakubczyk and Respondek {24] and N
~ finalized by Hunt, Su and Meyer ([18],[25]). .
-"\ -
~_ -
In this thesis our main work will be, using this feedback ~3
“~
R . . . . . .
f linearization theorem, to show that a given n-joint robot by
9
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manipulator can be linearized through a coordinate transform and -,

>

' nonlinear feedbacks. The resulting linear system is composed of n -
1 | .
uncoupled second order time invariant subsystems. The control ~}

S

problem is then reduced to controlling these n uncoupled second

order subsystems. A general expression of the explicit feedback i

A

- controls will be derived. Two examples will be given, a two and "_:
P
\: three joint robot manipulator, with accompanying computer '._\.
" '
simulation study. . o=
) 0
R %
’ 1.2 Organization of the Thesis 2
)
\ . . . ]
g In chapter 11, we discuss the robotics problem in terms of 4
~ trajectory planning and control approach to be followed for a given :':
e S
robot task. :._
i Chapter IIl deals with the manipulator dynamics. To design X
a robot control system, one needs a mathematical model of the o
.ﬂl . .
Y robot. Such a model can be obtained by Newton-Euler or Lagrangian ::
.
'
mechanics. . :
‘- Chapter IV is the main part of the thesis. We present -
8 first a robot controller using the 'computed torque' technique. ::F
- .
- o’
R Then, after giving some theoretical background needed for further o
f-’: developments, we state the feedback linearization theorem [25]. :\1
{'-
Using this theorem, we linearize the manipulator dynamic equations "
I : ]
:H' and derive a general form of the nonlinear feedback law. Then, we R
illustrate by two examples with computer simulations. Y
., '~
"‘. ‘!
> Finally, the summary and conclusions are given in chapter =
Ed V. :::
-
. ~]
] »
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CHAPTER 11
TRAJECTORY PLANNING AND CONTROL

The basic problem in robotics is planning trajectories to
solve for some specified task and then controfling the robot to
achieve those trajectories.

The trajectory planning consists of computing a desired
sequence of positions, velocities and accelerations of some point
which is usually the robot hand. This is in fact the so called
kinematics problem which will be discussed in the next section.

The control strategy to be adopted depends on the nature of
the specified task itself. For example, if the robot is permitted
to travel between the initial and final positions, a simple point
to point control is adequate. In this chapter we will give a brief

survey of these control strategies.
2.1 Kinematics

Kinematics of a manipulator ([26],[27)) can be defined as
being the position, velocity and acceleration relationships among
the links of the manipulator.

In planning a trajectory, one is primarily interested in
the position of the hand with respect to the work space, which is
called the hand space of the manipulator. A hand configuration in

hand space consists of position described by a vector P and
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orientation described by three orthogonal vectors: the approach
> . . +> +>
vector a, the orientation vector o and the normal vector n.

A robot task is naturally specified in terms of its hand

configuration in hand space. Tt is a transformation (matrix:

» » > > . .

(n(t), olt), a(e), p(t)), called the forward kinematics transform
which relates the hand frame to the robot base frame.

To achieve the desired configuration, one has to command
the joint actuators. To do so, we must be able to find the
corresponding joint coordinates (in joint space) from the desired
hand configuration. This inverse problem is referred to as the
inverse kinematics transform, or arm solution.

The direct kinematics has a straightforward solutionm,
whereas problems can occur when computing the inverse kinematics.
The solution may not be unique and singularities may occur,

depending on the geometrical configuraion of the arm.
2.2 Control

As mentioned previously, the control strategy to be
considered depends on the assigned robot task. These strategies

are classified as follows:

2.2.1 Point to point control

If there are no path constraints, if the work space is free

and if coordination with external moving objects (e.g. conveyors)
is not required, positional control can be used to ensure that the
hand passes through the specified corner points of the path. No

control over position is required between points. The path of the
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hand in such control schemes is unpredictable and the robot

exhibits a tendency to stop at each point.

In many cases we require that the hand moves smoothly along

a prescribed path (path tracking). This involves many computations

of corresponding desired joint coordinates (through the inverse
kinematic transform). Two cases occur here: off-line path
control, in which computations are performed before the motion
starts and on-line path control, in which calculations are

performed in real time.

2.2.2 0ff-line path control

If the work space is free and no external coordination is
needed, the hand path and the corresponding desired joint
coordinates can be specified before the motion is to start. To
accomplish a smooth motion (smooth accelerations), some techniques
are available, for example the path control polynomials technique

[26].

2.2.3 On-line path control

When external coordination is needed, then path points and
desired joint coordinates have to be computed on-line. This
constraint is computationally very difficult, and such a strategy
is in practice used when accurate path tracking is important and
the manipulator moves slowly. There are control techniques which
compromise between full on-line path control and point to point
control, in order to achieve smooth and accurate tracking (e.g.,

joint interpolated control ([26],(28])).
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2.2.4 Collision free path control y
If the work space is changing and not free, then collision :'
-

free paths must be followed. This makes path control very complex o

A
LA
P

if on-line path control is required. 3

2.2.5 Force control

~8

ks
-~ In some situations, the manipulator is constrained by :;\
& 4
external positional constraints. Two common situations can happen: .
I‘ » . .
o guarded motion, when the manipulator is about to contact a surface; L%
- Y
-0 '.
and compliant motion, when the manipulator is in continuing contact L
N :’
EE with a surface. In those cases, one has to control the forces
. . : . : €
e instead of the positions and we will be relating forces in hand v
o '\'4-
" space to torques (and/or forces) in joint space. o
s
i» Some controllers can simultaneously control forces along .:,
certain coordinate axes and control positions along the remaining By
- axes. They are referred to as hybrid controllers. -~
A

AA"

7
a l's

I'- -
%
S ] -,
h.“.
o e
”n * .
o
%
»
ba's W
A
~
A -
b Y
‘. 3
o
% y
L B
.
L)
= o
. @ 1...
o
25
{ .
[
.'. '-
=
" W 'l;\\:,$. . .-. \'.‘.' . '," Lo ) -V. ,.' L 'f.‘f ‘f tP -f ;) ',.." ‘f :--...I../n;‘-l;'.\".l"-%"- ‘.-‘,-."-".-:--.' \f‘.-( 'u"%‘\’ \r‘ .\‘ ..‘ N" -.\' '\. \' ‘-' '\- '-'-'-
N » & b ! g ! g gt A R i L) » - B N A '+




e

T

CHAPTER III
DYNAMICS OF A ROBOT MANIPULATOR

A robot manipulator is a méchanical structure which
consists of a series of links connected at jofnts. When several
joints move simultaneously, the motion and the torque applied at
one joint have a dynamic effect on the motion at other joints.
This results in high coupling among the joints and makes the
overall system dynamics very complex.

For purposes of dynamic control, one needs a mathematical
model of the manipulator. Such a model can be obtained by deriving
the robot equations of motion using either the Lagrangian or the
Newton-Euler approach [29]. The resulting dynamic equations for a
n-joint manipulator are highly nonlinear and coupled. They have

the following form:

D(q)q + H(q,q) + G(q) = < (3.1)

where g is an (nx1) vector of the actual joint positions (n
joints).
D(q) is an (nxn) inertial forces matrix.
H(q,q) is an (nx1) corriolis and centrifugal force vector.
G(q) is an (nx1) gravitational force vector.
T is a (nxl) generalized input vector (torque and/or force).

For a six-joint manipulator, computing these equations is a very
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difficult task. The result is hundreds of algebraic terms which
makes the on~line computation of the control torques a major
problem in robot control.

' Next, we derive the dynamic equations of a two joint and a
three joint manipulator that will be used later for purposes of

control.

3.1 Dymamic Equations of a 2-Joint Manipulator

We first consider the two-rotational-joint robot

manipulator of Figure 3.1, where the first link has a length ll

2 and mass mZ' Both

masses are considered to be centered at the link mid-points. The

and mass m the second link has a length £

load of mass o is placed at the end of the second link.

Using polar coordinates the potential energy can be expressed as:

! t)
V=mg5 sin 61 + ng(IISLn 91 + 5= SLn(91+92))
+ ng(llsLn 6l + lzsln(el+92)) . (3.2)

The kinetic energy, which is the sum of the kinetic energies of

link I (ml), link 2 (mz) and the load M,, 1is:

L
1 2.2 1 .2:2 .1  .2,;
Ro=gmty8) « gmli0] + gmy(8, +8)
1 2 ;o 2.2
+ i-mzzlzz(el + 6182) cos 62 + = mL!.lB1

1 2, 2 22 22
+=m L. (80 +8.) + lellz(el + Bl 2) cos 9

7 3 t,00 + (3.3

2

where 91, 62 are the joint angles and él’ 62 are the cor-

responding angular velocities.
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Figure 3.1.

Figure 3.2.

Two-joint manipulator
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The Lagrangian L = K - V (s then,
m m m .2
e, M My, 2 . "Ly,2,;
L= (g g r oy (57« 7ye00)
m, gt )
+ (-—2— + n:LL)!.ll.Z(e1 + 8,0,)cos e, - (2—- +m, + mL)gllstn 8,
m
2 .
- (2— + mL)gzzsm(elwz) (3.4)
The dynamic equations are obtained from the Lagrangian equations:
S I R (3.5)
98, 30,
! i
where ’I'i is the torque (or force) applied at each joint. The
final dynamic equations are:
m o m
1 2 2 2 2 2
T= (v my e m)ey + (75 ¢ )y v 2(35 + w2 2cos 8,8,
m m
2 2 2 e
*Lgm e m ey v (g7 s m e rgcos 0,8,
=, e m,
- (-2— + mL)r.llzsm 9,(28,+6,)8, + (T $m, mL)s{J!.lcosé)l
m
+ (-21 + mL)glzcos(91+82) . (3.6)
m m
2 2 2 N
Ty = (7= + m )ty + (77 + m)e 2,008 0, ]8)
m m
2 2 2 a2
+ (4— + mL)"ZeZ + (2— + mL)lllzelstn 02
m
+ (-iz + mL)glzcos(el+92) . (3.7
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3.2 Dynamic Equations of a 3-Joint Manipulator

Congsider now the three joint manipulator of Figure 3.2. It
consists of one rotational joint which rotates in the (x-y) plane
(joint variable ¢). It also has two prismatic joints. Ome allows
the hand to extend in the (x-y) plane (joint variable r) while the
other lets the hand translate along the z~axis (joint variable z).
The arm has a length £ and a mass M The load with a mass m
is placed at the end of the arm as shown in Figure 3.2. We suppose
that r > 2/2.

In the cylindrical coordinates the potential energy is:
. 2 .
V = w gt sin ¢ + (r -E)mR331n ¢ (3.8)

The kinetic energy is:

. . 2 . 2
R=gm o 0+ 1) e 20, ()G + G + £
. 2 .2
1 £- - ,2
sz (S0 (F) + (S5 e) + 7] (3.9)

The lagrangian L is then,

. . 2 . 2
1 .2 2.2 .2 1 .2
Legm e e D g m(PUE) - G«

L. (fery rrBr2 -t I 2 .
+ 'me(T) [('2-) (5 9) ¢+ &%) - m gr sin ¢
L .
- (r - 3)mgg sin ¢ . (3.10)

If we denote by F_ the force applied by the actuator

R
along the r direction, by Fz the force applied by the second
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prismatic joint along the z-axis, and by T the torque applied by

the rotational joint; we obtain the following dynamic equations:

1 . 3 -2 3 2
FR = (mL +sz)r - (mL *FmR)ro + §mglo

+ (mL + mR)g sin ¢ . (3.11)

1 N L
* 7 le(l-JrM + (mL + mR)gr cos ¢ - 5 mpg cos ¢ (3.12)

F = (m.L + mR)'z' (3.13)
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CHAPTER 1V
ROBOT CONTROLLER DESIGN

In this chapter we present two different control concepts.
In section 4.1 we present an independent joint control method, the
'computed torque' technique.

In section 4.2 we propose a nonlinear control approach
based on feedback linearization. A control algorithm with explicit
nonlinear feedback is derived. We also illustrate by two design
examples with computer simulations to evaluate the performance of

the proposed control method.

4.1 Controller Design with the 'Computed Torque' Technique

Most of the control approaches found in today's commercial
robots use the method of independent joint control ([4},[5]). An
illustration of these methods is the 'computed torque' technique
({30],[31]), also called the 'inverse problem' technique
([321,(33]). It is basically a linear proportional and derivative
control law.

As seen in chapter III, the actual equations of motion of a

robot are in the form:

D(q)q + H(q,q) + G(q) =~ (4.1)
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i. The principle of the 'computed torque’ technique is as "
follows. Let Dc(a), Hc(q,d) and Gc(q) be the computed counter- -
‘L parts of the actual D(q), H(q,q) and G(q). Let the control T f
; .
(force or torque) be: 5
g! T = Dc(q)['cid + Kp(qd-q) + Kv(éd-&)] + Hc(q,é) + Gc(q) (4.2) 4
w : . : N g
d} where A4 Y and qq are respectively the desired joint PA
" -
position, velocity and acceleration vectors.
:; Kp and Kv are constant scalar feedback gains (PD action). "
- If we assume that the computed Dc, Hc and Gc are equal to their :
actual counterparts, i.e.: R
& ;
A, = .
- Dc(q) D(q) -
‘w
- “\
‘ Hc(q,ti) = H(q,q) (4.3) e
¥
. 6 (a) = 6lq) - ' ¢
p
~ v
then from (4.1) and (4.2) we obtain: Y
s (ad-a) + Kp(qd-q) + Kv(qd-i) =0 . (4.4) e
f; If we let eq = Q-9 be the joint position error, then (4.4) :,
) o
becomes: ‘
oy >
o € +Ré +Ke =0. %.5) -
’ 9 vaqa pgq ' -
N The control problem is then reduced to assigning poles with -
negative real parts for (4.5) such that the error eq approaches 4
- ~
= zero asymptotically. One should note that the convergence relies :
. on the validity of (4.3). i
-~ ~
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RS .
v.\ ‘!
[ ] 4 ..
~
v
.l\ .
2
RS,
O O e T e 0Py T T ey S A S L A SRR




s

w‘i

LA

R

A AN

e »

28

From (4.5), the component e of the error vector e
i
has the following characteristic equation:

52 + Ks + K ¢ sz + 2 Cus + wz =0 (4.5)
v p n n

where

© = /Kp is the natural frequency.

K
g =__V_ is the damping ratio.
2

.

In almost any robot application overshoot is to be avoided. In
th:  case, the fastest response with no overshoot is the critically

damped one corresponding to § equals to one. Hence,

K = 2/
v p

and the error time response is:

/Xt -/K ¢t

e (t) = c e P e cte P (4.7
q; l 2

where ¢

1* €

, Aare constants,
From (4.7) one can say that the larger the values of the

feedback gains KP and Kv' the faster the asymptotic convergence

of e (t)
%

As an example we will use this technique to control the

three joint manipulator of figure 3.2.
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Example 4.1.1. Three ioint manipulator:

From the dynamic equations (3.1]), (3.13) and the control
law as given by (4.2), the actual control torque T and control
forces FR' FZ are:

L T 3 "2
Fo = (mL + Z_)(rd + Kplr~v) + Kv(rd-r)) - (mL ‘7 mR)ro
.3 m l‘z + (m, + m )g sin ¢ (4.8)
8 "R L R : . ’
T = {(m + 3 m )rz ol m 2(2-3c)){a, + K (¢ ~0) + K (s -9))
° L 4 R 4 R ‘d P 'd v ' d
+ 2(m 2 Jrie - 2 tcd + (m +m_Jgr cos ¢
L% ™ Z "R LR
L
- W 78 cos 9. (4.9)
F, = (mLﬂnR (z4 + Rp(zy-2) + K (&,-%)) (4.10)

where q = (r,o,z)t and q are the actual joint position and
. t ) . .
velocity vectors, y (rd"d’zd) and qd are the desired joint
position and velocity vectors, ;d';d'id are the desired accelera-
tions, KP‘ Kv are constant feedback gains.
A computer simulation was then conducted. In the first

part of the simulation, we simulated the motion of the end effector
from one initial path point to the next desired path point, or
equivalently through the inverse kinemstics, from an initial joint

state to a desired one,

. e a e - oa - R A I Sy S S L. LSRR 1P 1P P Y P ]
_'f~?\1~f¢f~~«.'~’\f.hl._- \n‘qr('f\f 4 .','f\r,:’_:. ,\J,_- o7 L A -“ I LRGN g

..
o,

v . m_ v s -

Y. '1";‘;‘:' V."

'y '

P

’

f

AN g

%

7 .
Y-y Ay

PR A S

-

XA

SALAAY

R I P
et

o> \.l'. )

£

-

a.-u"ft"

<.

.'. \" .



77

78

¢
A

P

h =

Initial joint state {(r = 1 m, ¢ = 0 rd, z = -1 m), and
desired one (r = 0.5 m, ¢ = -0.6 rd, z = -0.2 m) were arbitrarily
chosen. For the entire simulation the feedback gains KP and Kv
were chosen to maintain a critically damped response, i.e.
xvazfi(;.

Figure 4.1, 4.2 and table 4.1 show the simulation results
for Kp = 5000. A steady state error is present, due to the fact
that (4.5) represents a type 0 system. High torques are also
required for the motion.

Table 4.2 gives the steady state errors and the maximum
value of force FZ (Fz showed higher values than T and FR) as
function of the feedback gain KP

One notes that as Kp increases, the steady state errors
and the convergence time decrease. However, the torque values at
the beginning of the motion increase, which means more powerful
actuators are needed. Indeed, the position error eq and its
derivative éq are maximal at the beginning of the motion. The
inertial term is the dominant part in the expressions of the

torques given by (4.2). This implies that high values of KP and

19

K may result in high torques until e  and éq are small enough

v q

to cancel out the effect of such Kp and Kv' Hence, one should

compromise between accuracy speed and maximum allowable torques.

One way to maintain good accuracy, fast response and

smaller torques is with time varying feedback gains. One can first

put a bound on the maximum permissible torques and starts with

small values of KP and Kv. As the errors eq and éq are
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Table 4.1. Simulation of joint motions from (1,7,-1) to
(0.5,~0.6,-0.2) with KP = 5000.
THREE JOINT ROBOT MANIPULATOR-COMPUTED TOROUZ TECHMIQUE
CONSTANT FEEDBACK GAINS.
TIME R PH( 2
(o} 1.00000 0 -* 00000
. 10000 . 81791 - s81a1 - 19139
. 20000 .51419 - 38%a1 -.18%82
. 30000 .51418 - 53%82 - 18%82
. 40000 . 51418 - 58%82 - 19%82
. 80000 .%1418 -.%8%82 -.18%82
. 60000 .%1418 -.%58%82 -. 18582
Table 4.2. Steady state position error, maximum force Fz and
convergence time, as a function of the gain Kp
Feedback (F )max Convergence
gain Ar A¢ Az z time
Kp (mm) (mrd) (mm) (\) (s)
400 51 51 51 4762 0.72
1000 32 32 32 11646 n.44
2000 22 22 22 23029 n0.33
5000 14 14 14 56993 0.22
10000 10 10 10 113403 R
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Simulation of joint

motions from (1,0,-1) to (0.5,-0.6,-0.2).

'Computed torque' technique.

Figure 4.1.
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decreasing, KP and Kv are increased as long as the torque
limits are not exceeded.

Using this technique and increasing KP’ Kv in a plecewise
fagshion [34], the previous hand motion of the three joint
manipulator was again simulated. The maximum allowable torque
(force) was set to be 5000 Nm (N). Simulation results are given in
table 4.3 and figures 4.3 - 4.5. The results show a steady state
error of 4 mm for joint variables r, z and 4 mrd for ¢ . The
convergence time of the motion is 0.l15 seconds. Indeed, this time
varying technique gives an appreciable improvement in both steady
state error and maximum torque requirements, compared to when we
use constant feedbacks KP and Kv .

The second part of the simulation consisted in simulating
the end effector motion of the three joint manipulator along an
arbitrary preplanned path in joint space, which is given in table
4.4. The time varying technique, which provides a better
performance, was used and the maximum allowable torque (force) was
set to 5000 Nn (N). The required time of motion was set to 1.95
seconds. Simulation results, given by table 4.5, show a relatively
high maximum error position and a final steady state error.

To summarize, one can say that with the computed torque
technique adequate path tracking can be achieved only at the
expense of high power actuators. Even though, the time varying
technique lowers the torque requirements, relatively high torques

are still needed for acceptable accuracy. This is mainly due to

the fact that one tries to stabilize a nonlinear system with
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Table 4.3. Simulation of joint motions from {(1,0,-1) to
(0.5,-0.6,~0.2) with time varying feedback gains.

THREE JOINT ROBOT MANIPULATOR-COMPUTED TORQUE TECHNIQUE
TIME VARYING FEEDSACK GAINS.

TIME

o}
. Q%0000
. 100000
. 150000
. 200000
. 250000
. 300000

L, P
SARALCL S ST P

T P

R

1.000000
. 853972
.564022
. 504024
.304014
.504015
.5040135

PHI

o]

. 177880
. %52%944
. 595979
. 595986
. 595989
.58%598%

Z

. Q00000

731938S

. 266421
. 19%9¢82
. 19%98%
. 19%98%
.19%28%
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Figure 4.4. 'Computed torque' technique with time varying
feedbacks. Controls.

N Y {f ".:{.: "' .:\-- '(.; . '.-.;Jl - .: ; . ";“"f Tes et -.:. .- .:._ ‘\ . -. \\’I. .‘{‘:'.. N -..')‘.." "W R

P
"_

| 5
£y

e

AR
"l'

y ]
2

LLSS L
ALY

<
e

. -:,’-:’:.' l‘)l',l

Vole

*y

5{\‘.\.".‘.'...

.
n

g s NN

‘:
}

«
.

oy L
M
. b o o o ¢

Y
« a s
a_ v v

s

A

»

.‘ -’l ,
L]

X

RS

(f"‘;

TR
»‘.



Y3

g 7

>

'
.- ¥

5 A

Il

/

THREE JQINT MENIPULITIR

|
|
|
|
|
!
|
|
|
|

P I

§4000.

<7800, J

$1200.

2 44800. -
[
[+ 4
92

S 38400.
-4
¢+
o]
o

ry 32000, A
-

§ 25800.
>

g 19200, -
[

12800.ﬁ

8400,

o .03

KEY

—— GAIN KI

----- GARIN K2

TIME

Figure 4.5. Time varying feedback gains, Kp and Kv’

n 8

3

ORI

v v mgg ¥ 2 ‘- .'-q -~

oy

CLUE DY B S IR SR I

AN YN RS

Foty

'-‘l"'l‘-.

4‘1&‘.\\‘.“&‘-

A IS




&S’\{\

A Ay
XN

Table 4.4. Preplanned path in joint space
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Table 4.5. 'Computed torque' technique with time varying feedback
gains. Path tracking simulation.
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basically a linear PD feedback law. 1In practice equations (3.2),
on which the convergence process relies, are only approximately
satisfied. Hence, it is expected that the tracking accuracy is
worse than the one obtained by simulation.

We will comment more on this technique when comparing it to
the feedback linearization which will be presented in the next
section.

4.2 Feedback Linearization

The control of a n-joint robot manipulator is in fact the
problem of controlling a dynamic system described by a set of n
nonlinear differential equations. Due to the difficulty of the
problem, one may attempt to linearize the system and design a
linear control law.

A commonly used method to linearize a nonlinear system is
the first order linearization (Taylor expansion). By this method;
Golla, Gang and Hughes [5] linearized the dynamic equations and
designed a linear state feedback controller. However as
Vukobratovic [35] shows, when performance requirements (speed,
accuracy, etc.) are raised, this approach does not lead to
satisfactory results, mainly because at high speeds, higher order
terms cannot be neglected.

A different approach to accomplish the linearization is via
nonlinear feedbacks. This idea has been used in the past years and
was the start of what has been termed 'geometric control theory'.

Precisely, given a multi-input nonlinear system of the form:
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- x = X (x) + § u.l(x)X (x)
N 2
0,1 m . n
‘.; where X ,X ,...,X are smooth vector fields on R (or a
4
L . .
* n-manifold M ) and ul,...um are the controls. The question now \
s is, under what conditions can one find a coordinate transformation
u_"
and nonlinear feedbacks ui(x) (i = 1,...,m) such that the .
»
:: nonlinear system is linearizable. Lately, this question has been
) answered and a feedback linearization theorem with necessary and
::: sufficient conditions has been proved ([25]). '
o In this section we will present this feedback linearization X
N [)
& theorem and use it to derive a control algorithm with explicit
o feedbacks to control an n-joint robot manipulator.
i 4.2.1 Theoretical background
Lie algebra of vector fields ([36] is extensively used in
::{ geometric control theory. In this section we give some definitions
"
and theorems that will be used in later sections. We define the
! Rronecker indices and introduce the concept of nonlinear 9
controllability. ¥
'-"_ 1
Definition 4.2.1 i
> . .
. The Lie product of two smooth vector fields X(x) and
Y(x) is defined as:
2
[x,Y](x) = X ()¥(x) - ¥ ()X(x)
ve
l:-‘
¢ where Xx and Yx are the Jacobians of X and Y. .
0 :
’v
:,
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Definition 4.2.2

Let f be a smooth real valued function of a manifold Hn

onto Rl

The Lie operator 1L is defined as:

If(x)

ax.
i

(L E)(x) = (X£)(x) = <X(x),df(x)> = ] a.(x)
X Dot

where X(x) = (al(x),...,an(x))t.

for notational convenience, we will use the following notations:

(adX,¥) = [x,¥], ((ad’%,¥) = ¥)
(ad?x,¥) = [X,[x,¥]] = [X,(adx,¥)]

(ad“x,¥) = [x,(ad" 'x,1)]

Definition 4.2.3

Let f be a smooth real valued function of a manifold M"

onto R1

In terms of operator notion, the Lie product [X,Y] can also

be defined as:
[X,Y]€ = YO (XE)(x) - X(x)(YE)(x)

Definition 4.2.4

Let G be a finite dimensional vector space. If the Lie
product [X,Y] defined on G (X,YE G) satisfies
1. [ax1 + Xy, Y] = [ax Y]« (x,.¥] = [xl,av] + [x, ] =
a[xl,Y] - [XZ,Y] for a real.

2. [x,Y] = -[Y,Xx] (anticommutative)

3. ([x,v],z] + [[v.,z].x] + [{z,x],¥Y] = 0 (Jacodbi Identity)
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Then G is said to be a Lie algebra.

Definition 4.2.5

Glven two Lie algebras Cl and G,. Given also a one-to-

one mapping Lt from Gl onto G,. Then t (s said to be a Lie

-

algebra isomorphism i(f it satisfies:

l. For any real Cir S then
l(clxl + czxz) = cll(xl) + czt(xz) = CIYL + C2Y2
= [ o= 1
2. L[xl,xz] KIE SR 10 SONTLINS IR 5%
€ £ G
where xl, Xz G1 and Yl’ Y2 €6,

If L s also differentiable, it is satd to be a Lie algebra

diffeomorphism.

Theorem 4.2.1

If & 1is a Lie algebra diffeomorphism from a Lie algebra

C1 onto a Lie algebra GZ’ then the Jacobian t, of £ s also

a Lie algedbra diffeomorphism from G1 onto 62 with l*:X.Y; =

[4,x,1,Y]

Definition 4.2.6: Involutiveness

! k} be a set of smooth vector filelds on

Let C= {X,...,X

R®  (or Hn), with Xl(P),...,Xk(P) linearly independent for some
point P . Then the set C s said to be involutive, if for any

1S . : j 1j
X', X' £€C there exist smooth, real valued functions al ,...,uk

. k ..
such that the Lie product [X‘.XJ](x) ) G;J(x)xm(x) , x in the

o=
neighborhood of P, 1i.e. [X,Y](x) € span of C

N

. \f%v"\-'& -;.-I_..'\-’ f.-l-.;'~l_'.‘_‘f.\.'\l~l"~1- f..d...—.ﬁd'.‘v' "(.'.’ \o‘.‘l_.-".

NN

XY RREAA

TRRERN

AN AT

R A

RSN,

.')-':- YRR

XA

Pl

BERNARAFF

Ny

R
xS &

2N



%
IS

\ . :,:
v NA
~ N
- \f
Definition 4.2.7. Kronecker indices v
! The Kronecker indices for a matrix pair (A,8) are defined >
"
L)
‘o as follows: .:
S v
N i i-1 v
. Le¢ R = (B, AB, .. ., A B ’
. Let ¢, = dim R! = dim B
2 . . :
and L, = dim R - dim R’ -
:': For an integer j, the Kronecker index Ki equals the total number ::-
e of &, which are greater than or equal to j, i.e. N’
-~ \:
K. = (# L. 2. > j} <
3 t 107 J .

e
o

Example 4.2.1

2 [0 0 1 o] 0 0 [1 o] e
>, o
0 0 0 1 0 0 0 1 o

« Let A = , B = . Hence AB = &>

' 0 0 0 0 10 0 0

o

g

Y
" [0 0 0 0] [0 1] [0 0] L
ro . o
r. t, = dim B = 2 o
2 s

» R* = (B,AB), dim R® = 4 '
I .2 .l 3
- lz'dlmR-dlmR'A-Z'Z L
. .. ‘
Ko The Kronecker indices are: o
- _;\
. Ry = (#2020, 21} =2, K
o
a\' - ! ] ‘.,-
~ K, (#2002, > 2} =2 7
o K. =0 for i> 3. -
E i - o
N wl
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Definition 4.2.8. Local controllability of a nonlinear svstem

Given the multi-input nonlinear system of the form
0 T i
= X (x) + ) ui(x)x (x) (4.1)

i=1

where XO,XI,...,Xm are smooth vector fields on Mn. Let P be

the equilibrium point (corresponding to u, = Q) so XO(P) =0

Then system (4.1) is said to be locally controllable about P, if
for any time t > 0 there exists a control u such that any point
in a full neighborhood R of P can be reached in time t by

solutions initiating from P.

Theorem 4,2.2

A first order, sufficient test for local controllability of

system (4.1) along its equilibrium point P is:
. 30 L1 . .
dim span{(ad’X ,Xx )(P): i =1,...,m; j =0,1,...} =na
For a single input nonlinear system, this condition reduces
to:

dim span{(adjxo,xl), j=0,...,n~1} being linearly independent.

The proof can be found in [37].

4.2.2 Feedback linearization - single input case

In this section we define precisely the concept of feedback
lineartzation and state the single input feedback linearization
theorem,

Given the single input nonlinear system of the form:

N

%= x000 + wxtx) (4.2)
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T o(or MM, u is the

where XO,X1 are smooth vector fields on R
control and P is the point along which we want to linearize.

Given also the linear time invariant canoaical form:

0 1 0 0 ...0] 0]
0 0 1 0 0
y=Ay ¢+ by, A= , b= (4.3)
0 ... 0 1 0
[0 ... 0 | 1]

where u 1is the control.

Let Vo(y) = Ay and Vl(y) = b , be vector fields on R" , i.e.

y = v . vlu (4.4)

The feedback linearization problem can be expressed as follows:

When can one choose a coordinate transformation

y = ¢(x) , (4.5)

where ¢ 1is a local diffeomorphism (differentiable isomorphism),
with ¢(P) = 0 , ¢*(P) nonsingular and a nonlinear feedback

control
ulx) = vix) + w(x)y (4.6)

where u is a free new control, such that (4.5) and (4.6)
transform the nonlinear system (4.2) into the linear system (4.3).

Specifically, with feedback alone, system (4.2) transforms to:
. 0 1
% = X (x) + (v(x) + w(x)u)X (x)

i.e., %= w0(x) + wi(x) (4.7)
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0 0 1 l L
where W (x) = X (x) + v(x) X (x) and W (x) = w(x)X (x) are
smooth vector fields.
While with both coordinate change and feedback, we have:
y = ¢,(x)x , ¢, is the Jacobian of ¢
. 0 1
y o= o, (x)(X (x) + (vix) + w(x)u)Xx (x))
. . 0 1 .
i.e.: y =Y (y) + uy (y) (4.8)

where Y0(y) = o, ()X (x) + v(0X' (0) = o, W0 (x) , which we

want to be Vo(y) R

Yl(y) = o*(x)(w(x)xl(x)) = ¢*(x)wl(x) s

which we want to be Vl(y).

We note that Vo and V1 generate a Lie algebra L(Vo,vl).
Suppose that system (4.8) is the linear canonical form (4.3).
Since ¢ is a diffeomorphism, then by theorem (4.1.1), ¢,  is a
Lie algebra diffeomorphism too, i.e. ¢, cannot change the
structure of a Lie Algebra. Thus the Lie algebra L(wo,wl)
generated by Wo and wl must be isomorphic to the Lie algebra
L(VO,VI). In other terms, it is necessary to be able to choose
v(x) and w(x) to have such W and W' .

Next we introduce the concept of feedback equivalence of

two systems.

Definition (4.2.1)

Two systems are said to be feedback equivalent if one can
be transformed into the other via a local coordinate change and a

feedback.
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Theorem 4.2.3
! The n-dimensional, linear time invariant systems x = Ax +

Bu and y = Cy + Du where A,C are nxn and B,D are axm

r 4

matrices; are feedback equivalent i{f and only if the pairs (A,B)

-~ and (C,D) have the same Kronecker indices.
o Furthermore if (A,B) has Kronecker indices K1 > Kz 2.2
t .. . . .
}* Km , then it is feedback equivalent to the following canonical
=
form, 2z = Az + Bcu , 4 input vector,

f? and A® is the Jordan block diagonal matrix given by

= -
- o1 0 ... O
foy
tﬁ A = diag (A A) A, =

) L M i

l'.. l
">

0o ... 0

B <

A, being a (KixKi) matrix with ones in the superdiagonal and

zeros elsewhere. BS = (bl,...,bm) , bl [0 ...010 ... O]t
o i :
o where b is a (axl) vector with 1| in the ( ] Ki) component and
=1 -

n zeros elsewhere,
The proof can be found in [38].
The following theorem for the single input linearization

problem gives necessary and sufficient conditions for the existence

~

::' of the diffeomorphism ¢ and the feedback control u . It also
. gives the explicit form of ¢ and u
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Theorem 4.2.4 - Single input feedback linearization theorem
-~ Given the single input nonlinear system:
2, 2= X200 + uG0x (x) (4.9)
. where XO, Xl are smooth vector fields on Mn, u 1is the control

Ef and P is the point about which the linearization is desired.

i: Let ¥ = Ay + by (4.10)

- [0 1 0 0 ... 07 07

':?_: 00 1 0 ... 0 0

: with A = , b=

i« 0 1 0

Lo ... 0_ 1]

- be a canon{cal linear time invariant system with control u

. Then three necessary and sufficient conditions for system

(4.9) to be feedback equivalent to the canonical form (4.10) are:

:i: i) there exist a real a such that:

- £0(p) + ax'(P) = 0

:? il) Xl(P) s (adXo,Xl)(P),... (ad™” L O,X )(P) are linearly
independent (sufficient local controllability test,
theorem 4.2.2),

v iii) the ser {x', (adx’,xY,...,aa™ %% xH} s
involutive.

o Furthermore, when the above three conditions are satisfied and

since the involutive condition 3 implies that there exist a smooth

n

function h: R =+ Rl such that h(P) = 0 , (dh)(P) # 0 and
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i, 0

(ad?x 0

,Xl)h = <(adIx ,Xl), dh> =0 for j = 0,l,...,n=2. Then the
diffeomorphic coordinate change y = ¢(x) with ¢(P) =0 and

¢,(P) non-singular is given by:

y. = Wt 3 1=1,..00
b x0

and the feedback wu(x) = v(x) + w(x)y , where u 1is a new free

control (of (4.10)) is given by:

(L“oh)(x)
X
vix) = - —
(L lL 0 h)(x)
X' X
w(x) = ———
(L 1L 0 h) (x)
X' X

Proof.
The proof of this theorem is constructive, i.e. in the
process of proving the three necessary and sufficient conditions,

the coordinate transform and the feedback u are constructed.

Necess ary part

1) We have Vo(y) = Ay , SO VO(O) =0 . Since ¢, 1is a
Lie algebra diffeomorphism, it is necessary that WO(P) = XO(?) +
v(P)xl(P) be zero. Hence it is necessary that there exist a real
& such that XO(P) + GXI(P) =0

n-1_0

{i) We note that v'(0), (aav®,vh(o,..., " WO vhHo

are linearly independent (i.e., the linear controllability
condition is satisfied). Again, since ¢, s a Lie algebra

n-1.0

isomorphism, it is necessary that WI(P),...,(ad W ,wl)(P) are

linearly independent since L(Wo,wl) must be isomorphic to

“a e Nt eyt Lt we RS U N P I U S AR I (A T Ve A )
) \.( 3 .\“- W . v \..'\'.‘- '..~‘ '-“.' y -'-‘.'.-"-‘.' -..‘,-.‘-'.' 'F"-.-‘-.- ¢'-{- W ’- W h < .“*- '-\
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Lv? vhy. Bue, aaw®wh = [xO
w[xo,xl] + @Ot ¢ vlor! - wxloxt , and since w's ux
then wl(P), [WO,WIJ(P) are independent if and only if Xl(P),
0,1 .
(x”7,x"](P) are independent.
Continuing with (adzwo,wl) etc., we obtain the second
necessary condition:

0 n-1_0

2L p), (aax®,xH)e), ... ad™ %% x1y(p)

are linearly independent. This condition is sufficient for system
(4.9) to be locally controllable at P, However we can have system
(4.9) locally controllable at P but not have the second condition
of the theorem satisfied. In this case we cannot transform via
feedback and a coordinate change to the linear system (4.10).

(iii) At this point, one should note that for the linear

system (4.10), (ad"v ) = 0 . Also [(adJVO,Vl), (ad"vO v )] =0
for all j, £ . Again, we must require this for the similar
products of wo, Wl. Indeed, computing in the linear system shows

{Vl, (adVo,Vl),...,(a n= 2Vo v )} is an involutive set. Thus again

since the Lie algebras L(W W ), L(VO,Vl) are isomorphic, we

)\

require that (W ,...,(adn-zwo,wl)} be involutive. But, (adwo

Wb
!

= w[XO,XI] + (Xom)x1 + v(XIw)X - w(xlv)X1 . So as for the second

necessary condition, we conclude that it is necessary that:

{Xl,...,( a=2 0 X )} is involutive.
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Sufficient part.

We want to show that when the three conditions are
satisfied, there exist a diffeomorphism ¢ and a feedback u such
that systems (4.9) and (4.10) are feedback equivalent. We will
also give the explicit form of ¢ and wu.

By necessary condition 1, there is an a such that XO(P)

+ aXI(P) = () ., One can rewrite system (4.9) as: % = (Xo(x) +
axl(x)) + (u(x)-G)XI(x) , L.e. x = io(x) + ;(x)Xl(x) , where
X (x) = Xo(x) + axl(x) vanishes at P and ua(x) = (u(x)-a) is a
new control. Thus we can and will assume that XO(P) =0
The involutive necessary condition 3 implies there exists a
1

smooth function h: R™ + R° , with (dh)(x) # 0, such that:

0

(adx%,xh 20 j=0,...,0-2 . (4.11)

We will also choose h so:
h(P) = 0, (dh)(P) # 0

Now we let the coordinate change ¢ be:

yj = (Ljalh)(x) j=1,...,n (4.12)
X

with y = (yl,...,yn) = ¢(x)
We claim that the map ¢ satisfies 9(P) =0 and ¢ (P)

is non-singular, t.e. ¢ 1is a local diffeomorphism,
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a) Indeed we have already chosen h such that h(P) =0 i.e.,

y (B) =0 . Also, y (p) = (L sh)(P) = <x”(P),dh(P)> =0 ,
2 XO
since x°(P) = 0 . Similarly v, (®) = wi thye) =0

XO

j =2,...,n ; because XO(P) = 0 . Hence ¢(P) =0 .
b) We wish to show that $,(P) is non-singular, i.e. dh(P),

(4L h)(P),...,(dLn-lh)(P) are linearly independent.
XO XO

We already have dh(P) # 0 . Suppose (dh)(P) and

(dL .h)(P) are dependent, i.e. :3 @ # 0 such that
XO

(dL .h)(P) = a(dh)(P)
xo

0 1

Then, (adx’,xDn(p) = [XO,Xl]h(P) = ' - xdmce) =

W xOnyp) = «ta B (P) = x!, adh>(P) = a(x'h)(P) which means

X
that XI(P) and (adXo,Xl)(P) are dependent. Inductively if

(dLJOh)(P) ts a linear combination of (dLth)(P) Lt =0,...,5=1 ;
X X

we conclude that (adJ+1XO,X1)(P) is a linear combination of
(adLXO,Xl)(P) 0 S_i < j , which contradicts the independence of

n 1X0 X )(P) of necessary condition 2.

x'(p),..., (ad
Hence 0*(P) is non-singular and ¢ is a local
diffeomorphism given by (4.12). Next, we construct the feedback

u.

To shorten notation, let

Vix) = X0(x) + u()x (x) = %
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First we wish to show that

W = wd e, 3 =1,...,0-1 (4.13)
v e
.
q
&h and
!5 L tdn=o j=1,...,n-2 (4.14)
e (150
N For § = 1
b
- Lh = ° + uxbhh = %0 = L oh
f‘. ‘(
i ‘
For 3 = 2

14 08

2 0 1 2
heLlLh=("+ux)L h=1%h+ul .L .h
Lih = Ll 0 O (150

Again from (4.11)

s NS

adx?,xHn = %) - Pl = ) =L Lgh=0
x! x

Hence

3

2 2
ha=t1ln,
v 0

- Continuing in this fashion and as long as (adJ YO X )h = 0,

which is valid for 1l < j < n-1 we have
e h=tdh  1cjcnn

o since X'(p),...,(ad" %0, ') (P) are independent and X°(P) = 0

it follows that X' (P) # 0. We have (adX’,x')n = ¢} -

XO(th) = XI(XOh) = 1 lL Oh = 0 . Inductively, from

5.0 X
g (2’0 xhh = 0 for
i

[ -

l,...,n-2 we have
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L leoh =0 i = 1,...,0-2
<! x

AT

1]

The feedback u 1is obtained as follows. UDifferentiating the

XAy

P

coordinate transformation (4.12) we have

5. = (@) () ek = <x°+ ux',dh> = Lh=1 h=y
1 h= Lot Y,

&};sﬂ

i'-":’
P2

LA T =
P AL
vy s

B

=

L] Ax”
<$:f

¥
Y

-1 0 1
0

( dLn 1

X

hl
L

o NN

h) (x) % = <X° + uX ,dL“B h>
X

Y
'i{-’:'
[

(L“Oh)(x) + u(x) (L analh)(x)

X X X

1y
-1, l,l
o o

But u(x) = v(x) + w(x)u . Since we want system (4.15) to be the

AAA
‘

L,

linear canonical form (4.10), we have

Tty
[

[N

»
»

ad
‘l.l

. -1 n-1
o= LR () + v(x) (L LU R () + w(x)(L L7 h) (x)u
n X0 Xl XO Xl XO

R
)
« 048

One can then choose

Y
Py

,ZJ

(L _h) (x)
XO

(L

LN ]
o 4

v(x) = -

L
L
»
o

s

1Ln81h) (x)
X" X
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to make the last equation become 9n = . , and svstem (4.13) is

the linear system (4.10).

Remark.

In many applications the linearization is to be done
around the equilibrium point corresponding to zero controls. In
this case P is such that XO(P) = 0 and the first condition

of the theorem becomes trivial (a = 0).

4.2.3 Feedback equivalence - multi-input case

In this part we give the multi-input feedback lineariza-
tion theorem which is an extension of the single input one. We
will show that when the linearization works, the nonlinear system
is feedback equivalent to a canonical linear system determined

by the Kronecker indices of the nonlinear system.

Theorem 4.2.5. Multi-input feedback linearization theorem

Consider the multi-input nonlinear system of the form:

% = x0(x) + !f a, X1 (o) (4.16)
i=]
Let P be the point around which we wish to linearize.

The necessary and sufficient conditions for system (4.16),
with Kronecker indices K1 > Ky 2 oo 2K, to be feedback equi-
valent to the linear time invariant canonical form £ = Az + 8%y
as given by theorem (4.2.3) are:

1 - There exist reals a ,a so

1%y
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N m
X' (P) » 7 a.x'(p) =9
1=
K -1 K, -1
¢ 2
2 - Let C(x) = {Xl,...,(ad l xo,xl),x , ..., ad 2 XO,XZ)
K -1 0
.,Xm,...,(adm X ,X“ﬁ}. Then dim C(P) = n (local
controllability test).
3 - For each 1 = 1,...,m let
K.-2 R.-2
c, = (xhoo e U ox%xh g ad UoxP kD, xR
K.=2

L Gad b ox%x™)

Then Ci must be involutive and Span Ci(X) 2
Span (Ci NCcXx) t.e., Ci(X) < c(x) for all (.
The proof of this theorem is similar to the one given for

the single itaput case and can be found in [25].

Remark:

As for the single input theorem when the point of interest
P is the equilibrium point (in most applications it is) such that
x0(p) = 0, the first condition of the theorem becomes trivial
(ai = 0, for all ).

In the single input case the construction of the diffeo-
morphism ¢ and the feedback control u from the real valued
function h was proved. But for the multi-input case the con-
struction work has not been proved, we rather guess the functions

hi(X) as it will be shown for the n-joint robot manipulator.
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A special case of interest is when the Kronecker indices

are all less or equal to two. In this case the third condition
o102 m. ) .
is always true. Indeed, Ci = X ,X",...,X : which is an

involutive set and Ci < C for all i.

4.2.4 Application to robotics

In this section we will design a nonlinear controller for
robot manipulators bv emploving the feedback linearization
technique. We will first show that the feedback linearizaticn
theorem is applicable to linearize the dvnamic equations of a
n-joint robot manipulator. Then, we will derive a gzeneral
expression of the feedback controls. We will illustrate this
design procedure by two examples, a two joint and three joint
manipulator. Computer simulations for performance evaluation are
also given.

In chapter 1I1 we have seen that the dvnamic equations
of a n-joint manipulatcr, as given by (3.1), have the following

form.
D{(q)g + H(q.,q) + G(q) = = (6.17)

where q = (ql""’qn) is a vector of the actual joint positionms.

If we let

9 = X, i=1,...,n

then, the state space representation of (4.17) can be written as
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Fxl x2 0 [ ]
X, xl(x) 1 0 .
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5(4 fz(x) 0 1
: =1 1 fu ) 0 u, )+ s u () +
%21-1 X21 : 0
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L1

where ui(x) contains a nonlinear combination of some torgques rj.
We will assume that fi(x) is a smooth real function, for all {i.

System (4.18) is then a multi-input nonlinear system of the

form:
n ,
. 0 - i .
x = X (x) + X (x)ui(x)
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where XO; X, it=1,...,n are smooth vector fields as given by

«
Py

(4.18).

Let P be the equilibrium point of (4.18), corresponding
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Next we show that this state representation leads to
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Kronecker indices all less than or equal to 2.
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dim R® = 2n (det = -1)
22 = dim R2 - dim R1 = n
1i =0 for 1 >3

The Rronecker indices are then:

1 i1
= = 2
Ky = (# 2,2, > 2} =2
K = #2..4.>n; =2
n 1 L -

Hence all Kronecker indices are all less than or equal to
2. Next we check the three necessary and sufficient conditions of
the feedback linearization theorem.

Since we are interested in linearizing around the
equilibrium point P, with XO(P) = 0, the first condition is
trivial.

Also, due to the fact that all Kronecker indices are less
than or equal to 2, the third condition is immediate.

For the second condition let

Clx) = {x1,<adx°,x1),...,x",<adx°,x“)}

dim C(P) = dim R? = 2n

Hence, the nonlinear system (4.18) is locally controllable about
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Thus, the feedback linearization theorem is applicable and

the nonlinear system (4.18), which is the representation of a robot Hh

manipulator dynamic equations, is feedback equivalent to the

following linear time invariant canonical system: »

s r - r - - - ~ -
0] 1 0 a ... 0 0 0 0
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, which consists of n uncoupled second order subsystems of the
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form:

a

’

Sl .
DACATREAER
-. ,. n' .

1)
2" e®,
e -

ey oy,
-
N
l
=
—

v
>
-

[ ]
b

. (4.19)

where ui s are the controls.
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ti) Synthesis of the feedback controls.

As mentioned previously, the construction of the coordinate
change ¢ and the feedback control u 1is not proved for the
multi-input feedback linearization theorem. Proceeding as for the

single input case, we will 'guess' n real functions hl,...,hn:
R" » Rl , such that

*h.(P) =0 i=1,...,n
* dhl(P),...,dhn(P) are linearly independent.
* (aalxOxh =0 Tijm i

L .h, =<X',dh.> =0 ¥ i,

KL J ]
Choosing hl""’hn to meet these three conditions can be done by
n

inspecting the vector fields XO,...,X as given by (4.18).

One may choose

hl(x)

[ ]
H

hz(x) = x

.

hi(X) X511

hn(x) = X0

Indeed
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* h (0) = ... =h (0) =0
. n
* b (0) = (1,0,...,00F, dh,(0) = (0,0,1,...,00° ,...dnh_(0)
= (0,...,1,00% are linearly independent.
* L .h, =<X',dh,> =0 ¥ i,j
gl j
The coordinate change is chosen as:
y, = hl(x) = x,
0 0 t
y, = (L -h )(x) = <X ,dh,> = <X ,(1,0,...,00> = x
2 0! 1 2
yq = hz(x) = X,
y, = (L h)(x)=<x°dh>=x
4 02 el 4
(4.20)
Ypi-p T H{(X) = X
yo. = (L h)(x) = <X ,dh.> = x
24 QO Ny 2i
Yon-1 = Ba(®) = %50
0
Y20 (L ohn)(x) <X ydh > Xon

X
Equations (4.20) define the coordinate transform y = ¢(x) = Ix
(I = Identity), with ¢(0) =0 and ¢,(0) =1
The coordinate transform is then the identity, i.e. no
explicit coordinate change is needed and the linearization will be

accomplished by feedback alone.
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At this point we note that if we choose the state
representation (4.18) such that fi(X) = 0 for all i, we get
exactly system (4.19) with controls ui's instead of ui's.
Since ¢(x) = Ix , obviously ¢ = kx . But for the purpose

of showing the feedback synthesis for any diffeomorphism ¢(x) we
will continue the construcion work as follows:

Differentiating (4.20) gives:

. . 0 1 n
§, = dhok = <K« w X o+ ..o+ X", dh>
0
<X ,dh> =L h =y,
X
. . 0 1 n
§. = dL _h ek = <X_ + u X + ... + uX", dL _h >
2 01 1 01
X X
2
=2 L h, + 0oL L h + ... +ul L _h
xO 1 1 xl x0 1 n-yn x0 1
5o adhek = X e uxt e +uXx", dh.> (4.21)
21-1 i 1 n i '
0
<X ,dh> = L oh o=y
X
5.2 dL h.oek = <0+ ux' ¢ ..+ ux®, dL ho>
21 0t | n '’ 01
X X
2
= L" h., + gL L .h. + ... + . L .L _h. +
X0 i 1 xl x0 ! Ugl xO 1
+unL nL Ohi
X X
. . 0 1 n
= ox = >
Y20-1 dhn X X7 o+ ulX + + unx . dhrl
0
X ’dhn> =L Ohn Y20
X
g mdl hoex <X’ e uxte e ux™ AL o>
2n 0'n l n 0'n
X X
2
=L"h +goL L h <+ ... +alL L .h
XO n 1 xl xO n n Xn x0 n
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0
> =
<X ,C!h1 X,

%4t n> = <x%,00,1,0,...,00t = £, (x)
O 1

b, dL h> = <xb,00,1,0,....005 =1
O

x', dL h.> = <x',(0,1,0,...,0% =0 i=2,..

xOl

0

<Xo,dhi> = x%,0,...,0,1,0,...,00% = x

| 21
2i-1
x4 0

x° |

x',dL oh " <x',00,...,0,1,0,...,00% = 1

X |

0 T i#) it=1,...,n

<x0,dh > = x
n 2n

™ dL h > = <x™.(0,...,0,)55 =1

0

Hence (4.21) becomes:

K

h> = <x",(0,...,0,1,0,...,00% = £, (x)
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y, = fl(x) + ul(X)

Y35 %%
¥ = B0 v a0

(4.22)

ﬁ Y2i-1 T Y2t
V91 = fi(X) + ui(x)

Y20-1 = Y2n
L = £ (x) + u (x)

n n n

The nonlinear system (4.18) (s then feedback
equivalent to system (4.22). Now, we want to make system (4.22) be

the linear canonical form (4.19). This is accomplished by letting
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92i = fi(") + ui(x) = u
and the explicit feedbacks ui(x) are given by:
u,(x) = = £.(x) + u, (4.23)
1 1 1
where My is a new free control.

The control problem of the robot manipulator is now reduced
to controlling the n linear canonical and uncoupled subsystems
(4.19).

The objective of the control is to move the robot hand from
one path point to another desired one, or through the iaverse
kinematics, from one set of initial joint positions

X{Xqs.nesXy 4 O the desired joint positions w W

1°Y3r

Equivalently, via the coordinate transform (4.20), this is the

n=1

problem of moving from the states ISR ZYRRRES FI (of canonical
form (4.19)) to desired states LSRRI SO

Subsystems of (4.19) are in this form:

Y2i-1 T Y2i
(4.24)

which is a double integrator, type two system with transfer

function:
¥2i-1(8) Ll
uifss s2
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System (4.24) can be stabilized by a conventional state feedback.

Let u. =v

LTV T K T Ky b= b

Y2i-1(8) 1
with transfer function = . To make the
v.(s) 2
. 1 s +K,.s+K,.
o 21 21-1
S steady state response y2i—l(t) be the desired 2,1 let

Vi(s) = Li-z _1-u(s) where u(s) 1is a step input. Hence,

21

[
Y- (®) L3 L
lim - " lim s = R
- tre  “2{-1 s+0 s +K,.s+K,. 2i-1
. 21 21i-1

iy Hence (=) = 2

i Y9 i-1 tf L. o= Ryio1 - Therefore the control

2i-1

u. 1is:
i

N,
Eﬁ u, = KZi-l(ZZi-l - yzi_l) - K2iy2i 1= 1,...,n . (4.2%)
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We have shown that the original svstem (4.18) and the
linear canonical form (4.19) are feedback equivalent. This
feedback equivalence implies that both systems have the same
dynamic behavior. Again, in most robot applications, overshoot is
to be avoided. To ensure the fastest response with no overshoot,
the feedback gains KZi’ KZi-l are chosen for a critically damped
response of the second order subsystems (4.19).

By the coordinate transform (4.20) we can express w, as:

BT K (Moo T Rie) T Rty t= Leeon

Thus, the explicit feedbacks ui(x) are:

ui(x) = - fi(X) + KZi-l(UZi-l - x2i—l) - KZiXZi (4.26)

where fi(X) is given by (4.18)

KZi’KZi-I are feedback gains
Yoia1 1s the desired joint position, 1 =1,...,n
The actual control torques T, (i =1,...,n) to be applied by the

actuators are obtained by solving for T the set of equations

u.(x) ; it =1,...,n
i

Note that we assume that the states x

[rreX

(joint
2n J
positions and velocities) are all measurable.

Here, we summarize the procedure we went through to derive

the feedback controls.
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First, we obtained the state space representation (4.18)

A
‘

from the dynamic equations of an n-joint robot manipulator. For a

:; six-joint manipulator, the expressions of Ui(X) and fi(X) can
- contain hundreds of algebraic terms. In spite of the complexity of
- the robot dynamic equations, state representation (4.18) led to
B Kronecker indices all less or equal to two. This made the
:$: multi-input feedback linearization theorem readily applicable. The
- coordinate transform was found to be the identity and, explicit
t? nonlinear feedbacks were derived.
- Next, we will illustrate this procedure by two examples, a
<

two and three joint manipulator. For these two examples, a
a: computer simulation study is conducted to evalute the performance
. of the nonlinear controller. We will also compare with the
II 'computed torque' technique used in the previous section (4.1).
ﬁl Example 4.2.2: Two joint manipulator

From the dynamic equations given by (3.6) and (3.7), one

- notices that due to the coupling effect, Bl and 52 are present in

both equations. In order to derive the state space representation

B we first solve for 61 and 52. Then we obtain
% a (x)b 2
§ = - 2 12 (2 8%sin 8. + g cos(8 +8_))

1 az(x)—a (x)b, ¢ Ll 2 L2
. 2 1 272
/.,

b2 o
. - i 3

» + z(x)-a o ( b1£l£231n 82(201# 2)82
N 42 11 %792%
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a, (A)T -b Li 1
+ b3g€lcos %1 + blgzzcos(:l+%:)) + ; ¥
a5 (x)-a) (x)b,i5
5 = - (Y)bltz (2 ;2sin 3, + g cos(5,+7.))
- R - g ~ _7
2 a (x) -a (x)sz2 Ll 2 L2
2
a(x) e
+ (b,2 sin f¢(29 +7.)2,
2 (x) -a (x)b, 3 171 2 2 1 2772
a, (X)T -a (x)T7
- b,gi,cos =, = b,gl,cos(3 +3,)) + —= =
3 2 2 >
1 1 1 1 72 a3 2)-a (x)b 13
(4.27)
where
m
2
b tm
n
2
bty Ty
o
o, (4.28)
bysgtm
™
b4=4—+m2+mL
and
a. (x) = b 12 + b 12 + 2b 1 2. cos 3
1 471 2°2 17172 2
(4.29)
2
az(x) b222 + blzlﬂzcos 82
Let the state variables be:
Xp® 3
x, = vl
(4.30)
X = =
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X, = %2
Hence the state space representation is
(- .
k| = x,
iz = fl(x) + UI(X)
< (4.31)
Xq =%,
X, = £,(x) + u,(x)
e T 2 %2
where
a, (x) 2
= - ol
fl(x) Z(X)_a . 22 b11122x251n X3 (4.32)
a2 1V %792%2
2
a, (x) b,4,
gl(x) = - 2 blgt cos(x +x3) =

a, (x) a (x)b

[ SO OS]

ag(x)-al(x)bzé

(-blLlesin x3(2x2+xa)x4 + b3gL1cos X, + blngcos(x1+x3»

2 (4.33)
a, (x)T,~b
u, (x) = g, (x) +——=2 22" (4.34)
! : 2 ()2, (x)b, 22
aytx)=a,{x)by%)
a, (x)
f.(x) = b,L,2 sin X (4.35)
2 (x)-a (x)b 1°172%2 3
al(x)
g,(x) = b.gl,cos(x,+x,)
2 2 2 "1°72 173
az(x)-al(x)bzi2
a (x)
+ (b,2.2,31in X4 (2x +x Ix,
2 17172 4
a, (x) a (<)b2 2
b3g21cos X, - blgizcos(xl+x3)) (4.36)
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u,(x) = gz(X) + =
- az(X)—al(x)bzl

a (X)Tl-al(

x)T

(NS I E%] {381

System (4.31) can be put in this form:

2= X200 + X eou 0+ X0, 0

where
B 2
£f.(x)
Xo(x) - 1
X
£,(x)

uy ()5 u,(x)

point of (4.38).

’

tx) =

0]
1

b

0

0]

are the controls, and P = 0

2
X (x) =

]
0

0

L1

(4.37)

(4.38)

(4.39)

is the equilibrium

We first check that indeed the Kronecker indices are all

less or equal to 2.

B

]

1 = dim RN = dim (x',x%) = 2
)
R? = xlepy, (aax®,xhy @), @), (adx®,x%) @)
g 1 —
) a22b11112x2sin Xq
2 2
aa(x?, <) - a,-a;b,y1y (P) =
0
a12b11122xzsin X4
2 2
L a;"a b, 1, J
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W,

s
" ;
(adXO,Xz)(P) =
I\| 1
V>
-.'.
boa
b Thus, dim R® = 4
) . 2 . 1
and 12=d1mR ~ dim R = 2
‘.
" 2, =0 for i > 3
. 1 -
. The Kronecker indices are: R
Ky = (# 2.2, > 1} =2 "
. 1 it'i o~
“' h‘
& -~
Ky = {# 2|2, > 2} =2 -
1 AYY
A
N
S = o
K, = 0 i>3 R
N
Y h:_\
i all less than or equal to 2.

o
. For the conditions of the feedback linearization theorem, ','-.'
- )
s
- since XO(P) = 0, the first condition is trivial. We showed that ;\

e

- all Kronecker indices are less than or equal to two. This makes

condition 3 always satisfied. For condition 2, let

0 0

¢ = (x!, adx®,xYy, %2, aax®, ¥}

-~ then dim C(P) = dim Rz = 4 . Hence condition 2 is true. Therefore

system (4.38) is feedback equivalent to the canonical form (4.40)
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. (.
Y1 Y2

A Yy = ul

(
ol Q.
f -
> Y37y
e v, =u
:1‘:. t 4 2
e By inspection of the vector fields Xl, XZ; the real functions
"l
i h1 and h, are chosen to be
[ hl(x) = xl

(4.
w
£ hz(x) = X,
k: such that,
.- hl(O) = h2(0) = 0

dhl(O), dhz(O) linearly independent
L .h, =0 i,j = 1,2

The coordinate transform is then,

- y, = h(x) = x

hA |

by y, = (L sh)(x) = <x°,(1,o,o,0)t>=x
o 2 K01 2
::- Yy = X5

" - @ ) = <x2,(0,0,1,00% = x
.‘:‘ Ya XO 2 ’ syt l;

.- which is the identity.




The feedback controls ul(x), u,(x) as given by (4.26)

' are:

o ul(x) = - fl(x) + Kl(wl-xl) - K2x2 (4.42)
u,(x) = = f_(x) + K,(w,-x,) - K, x (4.43)

E 2 2 3773793 4% 4

. where Kl' Ky, K3, K& are feedback gains and Wi, Wy o are the

A desired joint positions.

The actual contrcl torques to be applied by the actuators

are obtained by solving equations (4.34) and (4.37) for TI and

e .
E? TZ . We finally have:

1 D Kpx, - gy ()

. T, = al(X)(- fl(x) + Kl(wl-x

.- + az(x)<- £,(x) + K3(w3-x3) - Kx, - gz(x)> (4.42)

Tz = az(x)(- fl(x) + Kl(wl-xl) - szz - gl(x)>

o~

~
(W23
~—

+b LE(~ f,(x) + K (w -x ) Kux, - gz(x)> (

When these torques Tl and TZ are applied to the joints,

the nonlinear system (4.31) (robot model) has the same dynamic

behavior as the uncoupled second order linear subsystems (4.40).

For this two joint manipulator, a computer simulation was

performed to evaluate the performance of the controller.

}, We simulated the hand motion from one path point to the next point,

or through the inverse kinematics, from one state of joint positions

to a desired state. Initial data (91 = 1 rd, 92 = -0.5 rd) and desired

joint positions (61 = 0.5 rd, 92 2 0rd) were arbitrarily chosen.
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Table 4.6. Simulation of joint motions from (1,-0.5) to (0.3,9)

with K1 = K3 = 400.

TWCO JOINT ROBOT MANIPW. ATIR-FEEC2ACK LIMEARIZATION
CONSTANT FEEDBACK GAINS

TIME THETA] THETA2
o] 1.00000 -. 50000

. 10000 .70479 -.20479

. 20000 .%4773 -.04a773

. 30000 . 50987 -. 00957
.40000 .30180 - 0Q18Q
. 50000 .50033 -. 00033

. 60000 . 50006 - . 0coos
. 70000 .50001 - 00001

. 80000 . 30000 -. 00000
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JOINT POSITIONS

1. Q0

TwD JOINT mMaNIPULRTOR

. 80~
. 60
.40
. 204

0—4

- 20—

-. 40 -

-.801

-1. 00

4

. 20 . 30 .40 . S0 . 60 . 70

TIME

Figure 4.6. Feedback linearization. Simulation of joint motions

from (1,-0.5) to (0.5,0).
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The feedback gains K K, and K,4 were chosen for a

1 K K3
critically damped response. One such a choice is: Kl = K3 = 400,

K = 40 ., The simulation results are presented in figures

27 %
4.6, 4.7 and table 4.6. These results show a good performance.
There are no steady state errors and no overshoot. The convergence
time is 0.75 s and the maximum torque is -2212 Nm.

A more thorough computer simulation analysis will be

presented for the three joint manipulator in order to be able to

compare with the computed torque technique.

Example 4.2.3: Three joint manipulator

The dynamic equations of the three joint manipulator

(3.11)-(3.13) can be rewritten as:

b b b F
2 .2 3 74 -2 3 . R
r=-—rd -7~ 9 ~T=8gsin 5 + —
b1 8 b1 b1 b1
- ) 3 rs r cos ) 1 cos T
p==2b, —+Fb, ~-b.g + = b,g +
2 1 4 4 1 3 ¢y 4 <, <y
F (4.46)
;=
by

where

+

1P

(4.47)

N .
+ +
pf&\lu
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. e v _»_ =

o & Yy 4 oy
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and

2 1,
¢y = byr + 7 b, (2-30)

Let the state variables be:

The state representation of (4.46) is then,

fil = X,

<

e
[}

fl(X) + ul(x)

e
[}

4 fZ(X) + UZ (X)

*5 = X
\ié = u3(x)
where
CI(X) = bzxi + % b4(2-3x1)
R bt
ul(x) = - %% g sin Xq + ;%
N
up(x) = = b2 XI:?x};J * 708 z:?x))(j clI(‘X)
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[
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u,(x) = FE

3 3

System (4.50) can be expressed as:

% = x0(x) + Xl(x)ul(x) . Xz(x)uz(x) .

where

ul(x), uz(x), u3(x)

point of (4.50).

0

o’

o]

are the controls and

P=0

We check again the Kronecker indices.

1

let

2

(adx?,x1) (p)

et
‘.- 's

0

P PP L i L

"x'“-\'-\‘r-.~."-$."~."-\.".' S \.' e

R® = {XI(P),(adx X)), 22 (P, (adX

1

0

3

X (x)uj(x)

h.l-l

(4.56)

(4.57)

is the equilibrium

2, = dim R' = dim {xl(P), X2 (), x3(p)} =3

,xz)(P),x3(9),(adx0,x3)(9)}

ﬂ

(p) =

"1 )

0
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(adxo

(adxo

Hence dim R2 =

x3)(p) =

o

o

X2 (P) = (0,0,0,0,1,0°

6 and

The Kronecker indices are given by:

K

Thus conditions | and” 3 of the feedback theorem are satisfied.

Also cC(p) = R2

System (4.50) is then feedback equivalent to the following

1

. Thus,

= K2 = K

3

linear canonical form (4.58):

2

K. =
1

(P)

. 2 . 1
22 = dim R - dim R = 3 |

i >4

dim C(P) = 6, which makes coadition ] true.
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| e

YAy

< (4.58)

"3
where S RLD and Wy are new free controls. Again, the real

valued functions h h h are chosen as:

1’2 3
hl(x) = x,
hz(x) = x4 (4.59)
h3(x) * Xg

which leads to an identity coordinate change. The feedback

controls u,, u, and u, given by (4.26) are:

1' 2 3
u[(x) z - fI(X) + Kl(wl-xl) - szz
uz(x) - - fz(x) + K3(w3—x3) - KAxA

uJ(x) = Ks(ws-xs) - K6X6

The explicit control forces FR' Fz and torque T are obtained

from (4.53), (4.55) and (4.56).
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T
s a2

9

« v
»

+ b3g sin X (4.63)

Fp o= b (- £00 « Ky Gwp=x ) = Kox, | 3

T = cl(x)[— fz(x) + K3(w3-x3) - KAxal + bygx, cos x,

L ;
-5 b,g cos x4 (4.64)

F_ = b3{x5(w5-xs) - Rex] (4.65)

These control forces FR’ FZ and control torque T,

transform the nonlinear system (4.50) (robot model) into the linear
canonical system (4.58).

Computer simulations were conducted in the same conditions
as for the 'computed torque' technique. We first simulated the
joint motions from intitial positions (r = |l m, $ =0 rd, z = -1 m)
to desired positions (r = 0.5 m, $ = -0.6 rd, z = -0.2 m), K, =

1
K, = K. = 400 and K, = Kb = K = 40 , were chosen for a

3 5 2 6
critically damped response. The simulation results are presented
in table 4.7 and figures 4.8 and 4.9. It is noted that there are
no steady state errors and no overshoot. The largesﬁ control
effort required is Fz = 4480 Newtons. The convergence time (time
at which the steady state is reached) is 0.7 seconds. This con-
vergence time can be further decreased by choosing larger feedback
gains, as table 4.8 shows. However, this will result in much
larger control torques and forces. For the 'computed torque'
technique, as was discussed previously, with a feedback gain Kp =
5000 we observed a position error of !4 mm (for r and z) and a
maximum control force Fz = 56993 N. So, clearly there is an

appreciable improvement in performance with the feedback

linearization approach.
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Tabla 4.7. Simulation of joint motions f

THREE JOINT ROBOT MAN[PULATOR-F

(0.5,-0.6,-1.7).

CONSTANT FEEDBACK GAIMS.

TIME

. 10000
20000
. 30000
.40000
. 30000
60000
70000
80000

Tahle 4.8. Position error,

as a function of gain

[e]s]v] o]0}
70480
54773
S0¢es57

.30180
.S0033
.S00ce
.SCcot

Sacco

Fen

[ =i}

maximum force

gACK

wm o f1,0,-1) o

LIMEARIZATICN

1

3%424
34272
58831

39784
$9980
53923
£9399
60000

F

r

- Q20C00
- 327867
- 27638
- 27832
- 20288
- 20C%3
- 2CC'C
- 2c0c2
- 2C0Co

and convergzenca

1
Feedback Position (r Convergence
z max
galn, K1 (N) time (s)
20¢ 0 2240 0.85
400 0 4489 0.4
800 0 8960 0.952
1500 0 16800 D.36
3000 0 33600 .29
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Feedback linearization. Simulation of joint motions
from (1,0,-1) to (0.5,-0.6,-0.2).
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In the computed torque technique, we have demonstrated that
it was possible to lower the control effort requirements by
utilizing time varying feedback gains. The same idea can be
applied to the feedback linearization. We first specify the
maximum permissible control torques and forces, and start the joint
motions with small feedback gains. Then as the error positions are
diminishing, these gains are increased in a piecewise manner [34].

In this study, we applied this technique to the three joint
manipulator. The maximum torque (force) is chosen to be 400 N.m
(N) and the feedback gains are doubled as long as the torque limits
are not exceeded. Similarly, if the limits are about to be
exceeded, the feedback gains are reduced by half. Again, we
simulated the joint motions from (r = |l m, ¢ = 0 rd, z = -1 m) to
(r =0.5m ¢ =-0.6m z=-0.2 m). The simulation results are
given in table 4.9a and figures 4.10-4.11. Note a shorter
convergence time of 0.5 seconds, with no overshoot and no steady
state errors. This was achieved with only 10%Z (400 vs. 4480) of
the control effort required by the constant feedback gain design.

One may try to optimize this technique by using the maximum
torques and forces available, which would result in an even faster
response. Such an optimization can be accomplished by feedback
gains which vary by a small increment. This increment would depend
on the control limits; and the smaller this step size, the faster
the response. However, as the simulations showed, if the increment
is too small, the system can acquire a large inertia. Stuce the

controls are bounded, this could result in overshoot.
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Table 4.93. Simulation of joint motions from (1,0,-1)
to (0.5,-0.6,-0.2).

THREE JOINT RCBOT MANIPULATOR-FESDRACK LIiNEAR[ZATION.

TIME VARY!NG FEEDBACK 3AINS.

TIME

. 0S000
. 10Cc0n
. 15000
. 20000
. 2%90G0o

20000
. 35000
. 40000
. 45000
. 30000

Table 4.9b. Feedback linearization
varying feedback gains.
joint motioms.

THREE JOINT RCROT MAMIPULATOR~FEEDBACK LIMEAR]IZATICN.

1

00000
. 98460
94793
. 88648
gliea2
.73272
65193
57964
.S2615
50107
. 50000

TIME VARYING FEEDBACK GAINS.

TIME

. 03000
. 10000
15000
20000
.2%000
. 30000
. 35000
.40000
45000

1.00GC00
.98194
.93023
.84914
.74474
63051
.S4812
30648
S0014
50000

PH 1

o]
-. 01848
-. 08342
- 1362%
- . 22633
-.32074
- 417R9
- 30443
- S63n2
-.5¢6872
-. 50000

PHi

-.02168
- 08373
-.18103
-.30632
-.44339
-.54226
- %9223
- £9%83
- B60CC00

00000
9735726
90877
31833
69799
S723%
44308
32743
24134
20171

20000

with optimal time
Simulation of

00000
97110
88836
75862
5318
40882
27629
21026
20cC22
20000
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-0.6,~0.2).

Feedback linearization with time varving feedback
gains.
to (0.5,

Simulation of joint motions from (l,0,-1)
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Using this optimal approach, we simulated the same joint ::
X
G motions with a torque (force) limit of 400 N.m (N). For these ¢
o
)
“~ control bounds, a step size of 0.5 was used. To avoid the -
- .
s overshoot problem, we switched from a critically damped response to ::
.
&
. s e s . . b
[ ] an overdamped response in the vicinity of the final desired
N " N , S
posittions. The stimulation results given in table 4.9b and figures i
- 4.13-4.14 show a decrease in convergence time of approximately 0.1 :i
3
second (0.4 vs. 0.5) for this optimal approach over the case when
(Vi
the feedbacks gains were doubled. o
o
This optimal approach needs further investigation in order ;?
to determine the exact relationship between the feedback gain Y-
-3
increment and the control bounds, with the overshoot as a :
constraint.
A control system is said to be robust if it can accommodate -
. . . . . v
disturbances, parameter variations, and model inaccuracies. We e
<4
. Tl
tested the robustness of our nonltinear feedback controller by e
vy
. . . Ly
introducing an error in the actual computed control torques. As e
@
table 4.10 illustrates,up to 60% error still gives a good :a
trajectory tracking. So, the controller is quite robust. o
N
Finally, we simulated the preplanned path motion of table :;
4.4 for the nonlinear feedback controller and the 'computed torque' B
controller. The time varying feedback gain technique was used in ;5
o
both cases., For the nonlinear controller, we specified a maximum pe
\
allowable torque (force) of 400 Mm (N). For the 'computed torque' i\
~
.
technique we permitted a maximum torque (force) of 5000 Nm (N). )
RN
IJ.
e
=
- \..
N
'_ _:.' -..'.'\"\ o ‘.-.;__./".r,"\.\.-_ Ml T .:‘.-\.-\.:\.:\_.-,'.:\.:_ . \.:__n“ kS ,_.-\.'.\.-_- -».:."\"_-."_ . ..\_.-__-
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| Table 4.10. Effect of disturbances and parameter variations on the
i tracking accuracy.
N Final position error
"~
>
Percent of
error 1in Ar Ad Az
.!_ controls (rm ) (mrd) (mm)
10 0.08 0.003 0
= 20 0.15 0.006 0
. 30 0.3 0.02 0.001
60 1.2 0.2 0.1
o
e
I
n

Table 4.11. Path tracking simulation.

L

Feedback
. linearization 'Computed torque'’
T = 400 Nm T = 5000 Nm
i. max max
Maximum Final Max imum Final
. tracking position tracking position
Joint error error error error
- Ar (mm) 2 0 11 4
) 4¢ (mrd) 2 0 10 4
Az (wmm) 3 0 11 4
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Comparative results are presented in table %.11. We note
that the feedback linearization design ytelds a smaller tracking
error and no final position error. However, the 'computed torque'
design results in larger tracking error and a steady state final
position error. Again, it appears that the feedback linearization
approach has a better overall performance. This approach combined
with the time varying design results in fast and accurate tracking

with relatively low energy control requirements.
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CHAPTER V

CONCLUSIONS

The robot control problem in general consists of planning
trajectories which describe desired hand motions, and then
controlling the robot to ensure that those trajectories are
correctly executed. In order to move the hand along a trajectory,
control torques must be exerted by actuators at the joints. Thus,
it is necegsary to convert the desired hand trajectories into a
time sequence of desired joint coordinates (inverse kinematics).

The dynamics of a n-joint manipulator s very complex.
The resulting dynamic mathematical model is a system of na highly
nonlinear and coupled second order differential equations. For a
six—joint manipulator, this system can contain hundreds of
algebraic terms. The dynamic control of such a system is then the
problem of controlling a multi-input nonlinear system. For robots,
many control strategies have been developed, among which the
commonly used open loop control is the simplest.

In this thesis, we presented and analyzed a widely used
independent joint control method, the 'computed torque' technique.
This approach is basically a PD action law with some nonlinear
compensations. The simulation study confirmed the fact that the

independent joiat control requires high-power actuators for
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adequate path tracking. We demonstrated that it is possible to
lower this requirement by using time varving feedback gains.

In this thesis, we also have studied a nonlinear control
approach based on feedback linearization. The feedback
linearization is a global linearization of a nonlinear system via a
coordinate change and feedbacks. A recent development in this
theory is a theorem which gives necessary and sufficient conditions
to linearize a nonlinear system [25].

To design the nonlinear controller, we first began with the
derivation of the state space representation of a n-joint
manipulator dynamic equations. This state representation led to
Rronecker indices all less than or equal to 2. We then showed that
the three necessary and sufficient conditions of the feedback
linearization theorem are all satisfied. The fact that all
Kronecker indices are all less than or equal to 2 resulted in a
linear canonical form composed of n linear, time invariant, second
order, uncoupled subsystems. The control problem was then reduced
from controlling a multi-input nonlinear system to controlling n
uncoupled linear second order subsystems. Each subsystem was then
stabilized by state feedback. Finally, we constructed a general
feedback control algorithm, which can be implemented on a
computer.

We illustrated this approach by two design examples.
Computer simulations were also conducted to analyze and evaluate
the performance of the nonlinear controller. The simulation

results show satisfactory performances. We obtained a fast
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resnonse with no steadv state error and no overshoot. The

performance was further improved by utilizing the time varying
feeaback gain technique. The maximum required control torques and
forces were reduced and the response was faster.

In practice, it s desirable that a control system can
reject disturbances, parameter variations and model inaccuracies.
We tested the robustness of the controller by introducing an error
in the actual computed control torques and forces. It was found
that the controller is indeed robust. This may suggest that 1if
on-line computation of the controls is a complex problem, the
dynamic equations (used in control computations) can be simplified
without loss in dynamic performance.

Also, a path tracking motion in joint space was simulated
for both the feedback linearization design and the 'computed
torque' technique design. The simulation results show a
substantially better performance for the feedback linearization
apprecach, which ylelds smaller tracking error, no final position
error and lower control effort requirements.

Of course, it would be interesting to see the results of a
practical implementation of this nonlinear control scheme.
However, this luplementation is not done in this thesis due to lacx
of robot hardware. It will be done when the robot hardware s
available to us in the future.

We also mention that in spite of the complexti:«

' dynamic equations of a n-joint robot manipulator =ne

r - . . " - . . N
PP e e N R L E R S I TP S
[ I S R . VP A P N A . "
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linearization theorem was readily applicable. This is mainly due N/
~ 1
! to the fact that all Kronecker indices are all less than or equal =
)
'~
to two. Because, in general, the conditions for linearization are .z
oy &)
\q: restrictive. First of all the iavolutive condition. 1In terms of E
- )
. W)
nonlinear system theory in general, one may try to extend the "
3
K\ applicability of the feedback linearization theorem by seeking 3
“~
o other canonical forms, in addition to the linear canonical form N
., >3
(4-2-3). TFor example, a nilpotent Lie algebra with a special Lo
A
!3:-\, structure. This can be a future research problem, ,-‘:
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APPENDIX A

R 9SS W R IS

L]
i,
S} PROGRAM CRR( [MPUT, OUTPUT, TAPE20)
] cxllll!l‘ll:‘II!I".!l‘:!x!t=2l‘!!Iltl!llllllx!llll!!!!!!:!!lllll
c SIMULATIGN OF A THREE JOINT ROBOT MAMIPULATOR-
. c FEEDEACK LiMEARIZATION(HUNT-SU-MEYER) -
~ c TIME VARYING FEEDBACK GAINS.
r“vl‘ CIl!ll!!!ll“llilxx!lxxllll!!lxt!lxll!r‘lil!tll!!!!lllll!ll!!
-
h":
Q INTEGER N,METH, MITER, INDEX, IWK(6) IER,K
REAL Y(6),WK(1%50),X, TOL,XEND,H, MR, ML, L
COMMON./A/B1, B2, B3,B4, AKR, AM1 , AKZ
IR COMMON/B /21, 22
tu DIMENSION AZ(120,10),UU(120,10),T(120),2(120,10)
% EXTERMAL. FCN,FCNJ
N=6
M=3
a4 X=0.0
ai Y(i)=1.
Y(2)=0.
Y(3)=0.
. Y(d)=0,
o~ Y(S)3-1, )
o Y(6)=0.
R TOL=.00001
H=0 £000001
METH=}
MI TER=20
INDEX=21
MR=10.
ML=z4.
. L=t
o) 21=1%.
ﬁb 22:2.02¢SART(21)
B1=ML+MR/4.
B2:ML+(3. /4. )xMR
Lq B3=sML+MR
o B4asMR=L
o 08 1 1=1,N
AZ(1,()aY(l)
1 CENTINUE
"3 T(1)s0.
5; 21,122
LA 2(1,2)322

DO 20 K31,60
XEND20. 01 «FLOAT(K)

.
& CALL DGEAR(N,FCN FCNJ,X,H,Y,XENO, TOL ,METH,
. / MITER, INDEX, WK, WK, |ER) *
- IF(IER.GT.128)GO TA S0Q

00 SO [=1,N

AZ(K*1, 112y (1)

kﬁ s0 CONTINUE
{ UJ(K, 1) zAKR

UU(K, 23 =AM1
¥I
ed
o
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UU(K, 3)=AKZ
T(K+1)=XIND oy
2(K+1,1)=21 =
2(K+1,2)=22 :
30 CONTIMUE L
WRITZ (20, 60) <
80  TIRMAT(/2X, 'THRES JOIMT ROBAT MAMIPULATOR-FESDBACK ', <
/ 1X, "LINEAR! ZATION') S
WR!TE(20,62) :~
62 FORMAT(2X, 'TIME VARYIMG FEEDBACK GAINS. ' //) ]
WRITE(20, 100) %
100 FORMAT(.,//,8X, 'TIME', 12X, 'R*, 13X, *X2',13X, "PHIl ', .
/ 13X, 'X4°,14% "2 ,13X, "X6" /) .
WRITE(20, 195 (T(K), (AZ(K,1),1=1,N),K=1,4%5,5) .
105 FERMATI7(3%,F12.%)) Y
WRITE(2C,120) Y
120 FGRMAT(/-8X, "TIME', 11X, "FR', 14X, 'T', 13X, ‘FZ', 13X, '"K1',13X, 'K2" /) :}
. O WRITE(20,12%)(T(K+1), (UUCK, 1), 1=1, M), (Z(K+1,1),1=1,2),K=1,860) <
128 FORMAT(6(3X, F12.%)) )
GO TM 900 ~
203 CONTINUE :
WRITE(29,550) f;
550 FORMAT(//4X, "X1', 15X, ‘X2*, 18X, 'X3', 18X, "X4', -
y, 15X, "XS', 15X, "X6'/) wa
WRITE(20,600)(Y(1), 121, N) o
500 FCIMAT(6/2X,FI1S5.°0)) -
WRITE: 20, =) (XEND, H, X,METH, MI TER) .
900 STOP 3
N £t
END L
"
~
~
SUBROUTINE FCNJ(N,X,Y,P0) A
(MTEGER N
REAL Y(N),PO(N,N), X o
2ETURN -
END L
o™,
-,
o,
4
g
D
SUBROUTINE FCN(N,X,Y, YPRIME) A
[INTEGER N ~
REAL YIN), YPRIME(N) , X, L i
CCMMSM/A/B1,B2,83, B4 AKR, AM1 , AKZ ol
COMMON/B/ 21, 22 1
L =1 X .
W1=0.9 I
W2:-0 6 o
W3=-0.2 \ N
ERZ(WI-Y(1) )22+ (W2-Y(3) ) 222+ (W3-Y(S))xx2 1,
IF(ER-0.2)9,9,8 o
8 cc=1.01 \
GO TG 13 i
ccz1.18
13 C1=82ev(1)222+(B4a/4. )%(L-3.2Y(1)) :
F1a(B2=Y(1)-(3, /8. 1284 x(Y(4)=n2/B1) N,
F2:(-2.%xB22Y(1)+(3./4.)=BA)2(Y(2}2Y(4)/C1) -
C2=(B3/21:x9.81xSIN(Y(3)) ::
C32(-222Y(1)+B84,2, 1x(9.81:COS(Y(3))/C1) N
5 E1=21eW! =212y (1)-2227(2) o
E2221:W2-212Y(3)-22xY(4) f
£3221:W3-212Y (%) -22%Y(6) )
3
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20
30
40
60

AKRsB1:(C2-F1+E1)
AMI1-Cix(-C3-F2+22)
AKZ=B3=Z3
[FLARS{AM1)-300.120,20,10
[F{ABS(AKR) -400.120,30,10
IF(ABS(AKZ® -400.)40,40,10
IF(Z1-10000.)60,60, %0
Z1221%1. 8

22=22. :CC2SQRT(21)

GO To S

21221/1.9%

2222 . sCCxSQRT(21)
E1=Z21x(W1-Y(1))~22xY(2)
E2=21=x(M2-((3))-72xY(4)
E3=221x(W3-Y(5))-22«Y(6)
AKR=B1+(C2-F1+E1)
AM1=C12(-C3-F2+E2)
AKZ=83<E3
[FOARBS(AKZY-400.)1,1 10
IF(ABS(aM1)Y-400 12,2,10
[F(ABS(AKR) -400. )%0,50,10
YPRIME())=Y(2)
YPRIME(2)2F1-C2+AKR/B1
YPRIME(3)=Y(4)
YPRIME(4)=F2+C3+(AMY/C1)
YPRIME(E)=2Y(6)
YPRIME(G)zAKZ/B3

RETURN

END
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N ‘ APPENDIX B

2
hs

R\ PROGRAM RCB( INPUT,OUTPUT, TAPE10)

L CXE X X X IR XX R A A AR KA A AR XA N TR EAMI XA T XK C T IR TR IINNALKRMRNR

[+ SIMULATION OF A THREE JOINT R0OBOT MANIPULATOR-

‘" [+ COMPUTED TORQUE TECHNIQUE.

QQ c TIME VARYING FZEDBACK GAINS.

,Ql_ XXy I X A A TR XN IR KRR Y XA KA AKX LA X TN I TN RN
]

INTEGER N,METH,MITER, INDEX, [WK(6), [ER,K
REAL Y(6),WK(150),X, TOL, XEND,H, MR, ML, L
COMMON/A/81,82,B3,B4, AKR, AM1 , AKZ
COMMON/B/ 21,22

DIMENSION AZ(120,10),0U(120,10),T(120),2(120,10)
EXTERNAL FCN,FCNJ

Nz6

M=z3

X20.0

Y(1)=1,

Y(2)=0.

Y(3)=0.

Y(4)20.

) Y(S)=-1,

Y(6)=0. .

- TOL=. 00001

H=z0. 0000001

METH=1

MITER=0

INDEX =1

MR=10.

ML=z=4.

L=1.

21218,

2222.xSQRT(2Z21)

B81zML+MR/4.

B2:=ML+(3./4.)=xMR

s

-
o!l_ A

"
1
-

AR
LI

Sl

& B83sML+MR
£~ B4=MR=L
- 08 1 121,N
AZ(1,1)av (1)
: 1 CONTINUE
T(1)20.
201, 1)22
201,2)222
DO 30 K21,60 -
-~ XEND=0. 01 2FLOAT(K)
N CALL DGEAR(N,FCN,FCMJ, X, H,Y,XEND, TOL,METH,
- / MITER, INDEX, IWK, WK, i ER)

IF(1ER.GT.128)G0 TO SO0
DO SO 121 ,N

iy AZ(K+1,1)=Y(l)
8? S0 CONTINUE
UU(K, ') =AKR

UU(K, 2)2AM1
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LK)
14
‘ 193 :l'
NS
" o
o
! UU(K, 3)=AKZ h
} T(K+1)=XEND :
| 2(K+1,1)22) Y
2(K+1,2)=22 v
30  CONTINUE )
WRITE(10, 60) Ny
\gg 50 FORMAT(/2X, 'THREE JOINT ROBOT MAMIPULATOR-COMPUTED', .
| ’ 1X, ' TORQUE TECHNIQUE ')
WRITE(10, 62)
62 FORMAT(2X, 'TIME VARYING FEEDBACK GAINS. ‘//) ’
! WRITE(10, 100) -
_ 100 FARMAT(///,8X, 'TIME', 12X, 'R*, 13X, 'X2°',13%, ‘PHI ', -~
o ’ 13X, 'X4',14X, 'Z', 13X, 'X6° /) N
WRITE(10, 108) (T(K), (AZ(K,[),1=1,N),K=1,60) gt
108 FORMAT(7(3X,F12.6)) e
P WRITE(10,120) d
M 120 FORMAT(//8X, ‘TIME', 11X, "FR*, 14X, "T', 13X, "FZ', 13X, 'K1‘,13X, ‘K2'/)
L WRITE(10,12%) (T(K*1), (UU(K, 1), 1s1,M),(2(K+1,1),1=21,2),K=1,860) -
125 FORMAT(6(3X,F12.%5))
Ge TO 900 ol
d} S00 CONTINUE o
o WRITE(10, 550) 5:‘
* 550 FORMAT(//4X,'X1', 18X, 'X2',15X, 'X3"',18X, 'X4", N,
/ 18X, ‘XS', 15X, 'X6'/) o
. WRITE(10,600) (Y(11,1=1,N) -
_ 600 FORMAT(6(3X,F15.10)) i"
] WRITE(10, =) (XEND, H, X, METH, Ml TER) ks
900 STOP K
END p‘:
. 9
<! ’:
. 7
h SUBROUTINE FCNJI(N,X,Y,PD) &
INTEGER N -~
REAL Y(N)Y,PDC(N, NI, X e
A RETURN o
o END i
o . A
2 F ;
v ::‘-
=, SUBROUTINE FCNIN,X,Y,YPRIME) N
) INTEGER N N
" REAL Y(N),YPRIME(N), X, L bl
COMMOM/A/B1,B2,B3, B4, AKR, AM1, AK2Z .
- CCMMON/B/71, 22 1
- L=, At
r'_' X7131. -
' X8120.9%
A91=-0.3 -
- X72:0.5 o~
. X32:0.5 -
e X9220.9 -
%73:0.2 K
X8320.2 A
) X9320.2 N
~ C12B2tY(1)xx2+(BA 4. )12(L-3.7Y (1)) Y
~ Fiz(B2:Y(1)-(3./8. ):Ba)=(Y(4)=222/B1) Ny
F2z(-2,vB2eY(1)+(3./4.)xBa)x(Y(2)4Y(4}/C1) <
C2:(B3/B1)29 81xSINIY(3)) NS
o C32(-B3xY(1)+B4/2. 128 813COS(¥(3))/C1) 3
b s T2BIR(XTI4Z1T(XT71-Y(1))+22¢(XT2-Y(2))) .
AlRZE1+(-822Y(1)+13./8. )x£4) Y (4)=x22+83~9 81aSIN(Y(I))
" '.-
W “u,
hY oy
A .:';
S
]
;*1
a
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E23C1(XB3+213(XB1-Y(3))+22x(XB2-Y(d4))) S
E3=2E2+(2.xB2xY(1)-(3./4.)xB4)xY(2)=xY(4) .
AM13E3+(B3xY(1)-B4/2.)x9,.81=xCOS(Y(3)) )
AKZzB3x(X93+21%(XO1-Y(S))+22x(X92-Y(6))) .
IF(ABS(AM1) -5000. )20, 20, 10 N
20 IF(ABS(AKR) -5000. )30, 30, 10 T
30 IF(ABS(AK2) -5000.)40,40,10 Iy
40 IF(21-50000.)60, 60, S0 >
60 21=2122.3 ~
22=2.xSQRT(Z1)
GO TO S '
10 Z21221/2.3 N
22=2.3SQRT(21) "
E1=812(X73+Z1x(X71-Y(1))+222(X72-Y(2))) T
AKR2E1+(-B2xY(1)+(3./8. )xBd)xY(4)xx2+B3xg. 81 «SIN(Y(3)) e
E22C1x(X83+21x(X81-Y(3))+22%(XB2-Y(4))) s
£32E2+(2.2B2xY(1)-(3./4.)2B4) =Y (2)xY(4) N,
AM1=E3+(B3xY(1)-B4/2.)x9,81xCOS(Y(3)) :
AKZ=B3x (X93+21%x(X91-Y(5))+22x(X92-Y(6))) . -
S0 YPRIME(1)=zY(2) -
YPRIME(2)=F1-C2+AKR/B1 b,
YPRIME(3)2Y(4) -f
YPRIME(4)2F2+C3+(AM1/C1) 9
YPRIME(S)=Y(6) 2
YPRIME(6)=AKZ/83 ]
RETURN 3l
END L
5
>
_',‘_.-
\-h
)
-
.
Y
S
o~
)
NN
iKY
R
Ta
At
N,
S
-
aa
ot
-."v
\!
3
L
N
N
) 1
o~
7
)

- . - N Y AIC I R I I P P R S . L . T T T I LI T L S - St W ¢

y



s 4 .

g £ P Ye ‘ 5 e - . : " ) » 0 P ¥ x »
\! h.-hl). A -r\-.. CLEN Y AWWL..@.‘-f\n-.\ P Bl L B T . Tting AR A P R YNl & - lfd(n’ll‘ﬂ ) PRI LI AT &

- B R S L

Part 2
Stability of Time-Varying System
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In robot control, variable effective inertia and gravity loading effects suggest
the imperative need for time-varying models. It has been shown [1] that proper
use of time-varying controller can produce fast robot manipulator motion without
causing undesirable overshoot. Most of currently available methods of controller
design require precise parameter values of the plant, which are often impossible or
impractical to have in practice. In recent years a new control design philosophy
has emerged. This is the intelligent control (2]. An intelligent control is capable
of updating its control strategies through learning. It is operating on heuristic as
well as analytic reasoning. It employs both quantitative and qualitative information
in its decision making processes. In fact, very often the qualitative information is
placed higher than the quantitative information in its ruled-based decision hierarchy.

Stability is the first requirement in any satisfactory control action. stability
criteria for linear time-invariant systems are widely available, but explicit and prac-
tical stability criteria for time-varying systems are still lacking. However, explicit
stability criteria for certain special classes [3] of linear time-varying systems are
available. An intelligent control is inherently a time-varying control. In the fol-
lowing we shall examine the stability of a special class of peridically time-varying
system. The effect of rate of parameter variations on stability will be examined in
detail. We believe the results obtained here will provide the qualitative information
that may provide a general guideline for designing an intelligent control of robot
manipulation. As will be seen in subsequent analysis rate of parameter variations
appears to be most critical to stability for frequency in a band centering around the
"resonant frequency” of its constant nominal system.

Consider a linear time-varying system

z(t) = Az(t) + Bu(t) (1)

the stability of A(t) in general is still an open problem. However stability for
special A(t) can be precisely determined. Results obtained from such analysis may
provide useful qualitative information in the design of intelligent control of robot
manipulator. To deal with a manageable problem at this point, we shall assume
that A(t) can be separated into

A(t) = Ao + A4,(t)

where A, is a constant nominal part and A, (¢) is a time-varying part that represents
varying parameters in the system. It is further assumed that associated with A,(¢)
there is a parameter w that governs the rate of parameter variations in the system.
The parameter w can be viewed as a quantity that specifies how fast the time-
varying controller is changing or how fast the variable inertia or gravity loading of
robot manipulator may change in its operation. The important question of interest
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is how w will affect the stable operation of the system, i.e. how w affects the stability
of the system. To gain insight into this problem, we shall examine the following
special system. Consider the system (1) with A(¢) being

(1) = a+vycoswt+dsinwt B+ 6cos wt ~vsin wt (2)
‘ T | =-B+6coswt—ysinwt «—ycoswt~dsin wt =

Equation (2) above can be written as

A(t) = Ao + A1(t) (3)
with 3
a
.40 = [—B a] (4(1)
and
A, = | 708 wt+6sinwt Ocos wt —ysin wt (4b)
' 7 | 6cos wt —ysin wt —vcos wt — ésin wt

where A, represents the constant nominal part and A;(t) represents the time-
varying part due to parameter variations. It should be commented that 4,(¢) can
also be written as

Ay(t) = [7 é } [coswt —sinwt]

6 —~ sinwt cos wt

2 BK(t) (5a)

or _
cos wt  sin wt ] [ ¥y 6 ]
—sin wt cos wt 6 —x

Ay(t) = [

2I)C (5b)

These interpretations permit us to examine the time-varying effects of control or
feedback. It can be shown [4] that A(t) in (2) is stable if and only if

a<0

and
2

az+ﬂ2—72—62+%—6w>0
It will be interesting to see the physical significance of those conditions. Note that
the constant nominal system Ap is stable if and only if a < 0. Therefore for the
time-varying system A(t) to be stable, it is necessary that the constant nominal
system be stable. However such a condition will not be in general sufficient to
ensure the stability under parameter variations. It is intuitively clear that the rate

2

‘e

~ o T e L e e e e e e
" Nf 1’:‘ e .*‘1'-“'.\-‘_ KN ).‘ ' St

g ‘~"“V
1 at e

’ ‘\'3'
S

AR
4

" "i‘_'I .

AN

A

4

)

0

|




>,
o
! of variations in the parameters should affect the overall stability. Here we like to
examine the effect of w on stability in more detail.
" The effect of w on stability can be exaniined through the following condition:
M
y w 2 2 2 2
f(w)s(;—ﬂ) +a=(v*+6%) >0 (G)
s It is easy to see that if the constant nominal system 4y has sufficient damping to
suppress the perturbation induced by parameter variations. namely if
o a® >4 + 482
14 then the above time-varyving system is stable for all w. In other words. if the
Wi magnitude of parameter variations is not large enough to upset the stability of the

constant nominal system, then the rate of parameter variation has no bearing on
the overall stability.

It can also be seen that if the magnitude of variations is sufficient to cause
instability i.e. if
<. 72 + 62 > 02
great attention should be paid to the rate of variations. It is found that stability is
= determined by a critical frequency band [w;,w2](to be called the instability zone).

. where
w1 =2(B—\/72+62—az) (Ta)

oy and

e wr=2(g+ V7 +5 - a?) (78)

a The system is unstable if w € [w;,w;] and it is stable if w ¢ {w),w2]. Not that
the instability zone is centered at 23, twice the damped frequency of the constant
nominal system, rather than centering at its undamped natural frequency given by
. wp = y/a? + (2, as intuition may suggest.

oy
&
- Some useful observations concerning stability of time-varying system are sum-
marized below:
5 1. Magnitude of variations is found to be more significant than the rate of
variations in affecting the system stability.
2. For a time-varying system to be stable, very often it is necessary to have a
ﬁ stable constant nominal system.

3. If the magnitude of variations is lare enough to upset the stability, the

P system tends to have the worst destabilizing effect when the rate of variation is in

F or near the instability frequency band centred at twice the damped frequency of its

constant nominal system. In other words. it is important to avoid excting possible

~ resonance. [t is also noted that very fast variation (when w is large) or very slow
variation (when w is small) tend to offer better chance of avoiding instability.




TR T TR T TR, Ll TN

|

o]

Y

ns

0~

|¢-

]

Ay

Yy

-

Al

7

P
-

R

M ]
AN

k.".

-

of variations in the parameters should affect the overall stability. Here we like to

examine the effect of w on stability in more detail.
The effect of w on stability can be examined through the following condition:

f(w)E(g-ﬂ)2+a2—(*/2+52)>O (6)

It is easy to see that if the constant nominal system .4 has sufficient damping to
suppress the perturbation induced by parameter variations. namely if

a?>v%+62

then the above time-varying system is stable for all w. In other words, if the
magnitude of parameter variations is not large enough to upset the stability of the
constant nominal system, then the rate of parameter variation has no bearing on

the overall stability.
It can also be seen that if the magnitude of variations is sufficient to cause

instability i.e. if
4 + 6% > a?

great attention should be paid to the sate of variations. It is found that stability is
determined by a critical frequency band {w;,w;](to be called the instability zone),

where

w=2(8~ V746 —a) (Ta)
and

wy=2(F+ VA8 - a?) (75)

The system is unstable if w € [wy,w;] and it is stable if w ¢ [w;,w;]. Not that
the instability zone is centered at 23, twice the damped frequency of the constant
nominal system, rather than centering at its undamped natural frequency given by

wn = \/a? + 32, as intuition may suggest.

Some useful observations concerning stability of time-varying system are sum-

marized below:
1. Magnitude of variations is found to be more significant than the rate of

variations in affecting the system stability.
2. For a time-varying system to be stable, very often it is necessary to have a

stable constant nominal system.

3. If the magnitude of variations is lare enough to upset the stability, the
system tends to have the worst destabilizing effect when the rate of variation is in
or near the instability frequency band centred at twice the damped frequency of its
constant nominal system. In other words, it is important to avoid excting possible
resonance. It is also noted that very fast variation (when w is large) or very slow
variation (when w is small) tend to offer better chance of avoiding instability.
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Part 3

Learning Controller Design
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Abstract

The possibility of controlling dynamical systems under incomplete and even
very small a priori information is based on the application of adaptation and learn-
ing in automatic systems which reduces initial uncertainty by using the information
obtained during the process of control. It goes without saying that adaptive tech-
niques in control(but also in filering and prediction) have been extensively studied
for over a decade. and not long ago a rigorous and comprehensive theory of conver-
gence of adaptive algorithms has emerged [2]. Also in practice numerous successful
applications have been reported ([1], [2]). At the same time little attention has
been given to “learning” and “self learnining” in the world of control engineering
until recently when S. Arimoto and his co-workers {3] proposed a learning control
method called betterment process based on a simple iterative algorithm, which was
successfully applied to the motion control of robots{4]. A closer look at the better-
ment process may lead to other alternatives and perhaps to a unified (generalized)
method. The developement of such learning control methods along with possible
applications and problems for research in learning control form the basis of this
thesis. Before presenting the thesis outline it is important to notice that the terms
“adaptation” & “learning” do not have a unique interpretation and usually their
definitions vary from one author to another or even from one technical paper to an-
other {1]. It is certainly not the purpose of the author to get involve in the technical
terminology but since “learning” seems to be easier to understand in the context of
this thesis, it will be therefore used exclusively (unless otherwise stated).

Outline of the first part

This part of the thesis consists of the following four sections. In the first
section the betterment theory is briefly reviewed : mathematical background, main
theorems, and different schemes are introduced. Some basic remarks and notes end
this section. Section two contains the theoretical basis of learning methods based on
function decomposition, to do that some results from linear algebra and functional
analysis are needed. In the third section a more powerful and general algorithm is
developed. Remarks and discussions concerning the limitations and applications of
the algorithm conclude this section. In the last section of this part of the thesis
the extension of the decomposition techniques to a class of nonlinear systems is
investigated, it is also shown that a combination in a certain way of the betterment
algorithm and the decomposition techniques can yield to a faster learning .

1.0 Betterment Processes

In this section an algorithm called betterment process for linear systems is
introduced. This algorithm updates the control input based on the previous oper-
ation data and “betters” the performance of the next operation in a certain sense,
provided a desired output is given. In this section three types of learning control
scheme are discussed.
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'_, 1.1 Background
Consider the linear time invariant continuous system described by the following
) state equations: )
g X(t) = AX(t) + Bu(t) (la)
y(t) = CX(t) (10)
g\ where t represents the time in the interval [0,T). If we assume that for each run the
initial state X(0) is the same fixed state z° then in the k-th run the output of the
::',) system(1) is
g
¢
,_:, yr(t) = Cett X (0) + / Ce*'=7) Buy(7)dr
e 0
K t
= Ce?r° +/ CeAlt=7) By (r)dr (1.2a)
r, 0
;}' t
= g(t) +/ h(t — T)ug(r)dr (1.2b)
0
e
;ﬁ From (1.2) it is clear that g(t) and h(t) are the same for each run in the interval
[0,T]. That is
i g(t) = Ceflz® (1.3a)
h(t) = Cet'B (1.3b)
~ Definition 1. (see [3],[5]) A linear time invariant system described by (1.2) is said
w, to be strictly positive, if for any T > 0 and any u(t), t is in [0.T| the following
inequality is satisfied with some constant a > 0
g T ,t T
/ / uT(t) h(t — 7) u(r) dr dt > a/ ul(t) u(t) dt (1.4)
;-\' 0 0 0
-
v Definition 2. Given a vector valued function u(t), t in the interval [0,T] then the
. L2-norm of u(t) is defined by
::: T 1/2
. lull = [] uT(t) u(t) dt} (1.3)
w 0
o
Definition 3. The spectral radius v, of a matrix A is defined as
i
- = p{d} = X [A
~ Yo = p{d} fé’fﬁ]' |
A where o(A] represents the set of the eigenvalues of the matrix A.
Definition 4. A rational transfer function matrix H(s) is said to be proper if
lim H(s) <
2
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and strictly proper if

lim H(s) =0 (zero matrix) e
g0 N g:
In the scalar case. a transfer function is proper if the degree of the numerator |'::c

polvnomial is less than or equal to the degree of the denominator polvnomial.

h"n'
N
1.2 C°-Type Betterment Process ",
Consider the linear time invariant continuous system described by (1) where o
the input vector u(t), and the output vector y(¢) have the same dimension. Also .
suppose that a desired output vector yq(t) is given over the interval [0, T], then the :_ \
C? -type betterment process is defined by NN
LNt g
py
.
wie1(t) = ug(t) + Cek(t) (1.6) e
where
Rt
ex(t) = ya(t) — yu(t) (1.7) 3
and I is an m x m constant gain matrix to be defined. yi(¢) and ux(t) are ;‘\»
respectively the m-dimensional output and input of the system (1) in the k-th run. e
Theorem 1. Suppose that the linear time invariant continuous system (1) is h )
v strictly positive and -
- T =qI (1.8) .
s
I is the m x m identity matrix and v is a sufficiently small and positive constant. Ny
Then the C° -type betterment process is convergent in the sense that 353
X lexs1ll < pllel (1.9) o
- 'l{‘- \
where htes
0<px«l1
The proof of this theorem can be found in [3]. ::.j:_:
e
1.3 C! And Mixed Type Betterment >
The C!-type betterment is described by the following simple iterative rule of N N
input modification: Ay
\1
¥,

d
up+1(t) =Uk(t)+r2't'{!/d(t)_yk(t)} (1.10)

<

Here also. ug(t) and yi(t) are the m-dimensional system input and system output ~
y respectively (the system under test is system (1)). The constant I is an m x m 2
. o . Sy
/ constant matrix called the “gain matrix DA
a ‘(
“w
oo
s
~
~5
'\'.

II/



Theorem 2. The C!-type betterment process defined by (1.10) converges in the
sense that as k — 20 yi(t) — yd4(t) uniformly in t over [0,T) if the following
. conditions are satisfied:

L 1:
' where ||.||» is the matrix norm induced by vector norm v and
3 ollee = max o
\ 2:
: uo(t)syd(t) are in Cl[os T]
N 3:
W ya(0) = Cz°

The proof of theorem 2 can be found in [3).

Obviously, since the parameters of the system (1) are assumed to be unknown
- condition 1 does not help in choosing the gain matrix I'. In comparison with the
above two types of betterment, it is also useful—as will be shown in the next
subsection—to mention the so called mixed-type betterment process defined by:

v‘?{

-,
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X v
]

U.k+1(t) =UL(t)+ (Q-i—l‘%) CL(t) (111)

hE }
Yy

Y

' 1.4 Remarks And Discussion

K
In the above subsections different function norms have been chosen in evalu-
v ating the performance of different types of betterment processes. For the C!-type
7 betterment the uniform norm ||.||x becomes inadequate when the considered time

interval [0,T] expands, because the constant A becomes too large. Although it can

be shown that for an asymptotically stable linear system a fixed value for A is per-

. mitted for any expansion of the interval [0,T], it may be more suitable to choose
some other kind of function norms, especially when the desired output y4(t) is de-

™~ fined over the semi-infinite interval [0, oc). For example, if we consider the L-2 norm

# for the C!-type betterment process and the desired output y4(t) is defined over the
semi-infinite interval [0, 00) then it can be shown that

e t
éxs1(t) = (Im — CBT)éx(t) —/ CAet'=") Bréy(r)dr (1.12)
B °
’ provided that all eigenvalues of matrix A have negative real parts. Now if we take
the Laplace transform of the above equation and denote
. Evsr(3) = C{érs1(1)]}
E" 4
7
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v

E(s) = L{éx(t)} (1.13)
H(s)=C(sI - A)"'B

then we get

Erp1(s) = (Im — sH(s)[)Ei(s) (1.14)

By putting
7 = sup p{Im — jwH(jw)T} (1.13)

where p{XX'} is the spectral radius of the matrix X and ||E|| is defined for a vector
valued function £ = (E}, ...,E'm)T by

+o00 m )
IEN? = Y IE(jw)[? dw (1.16)
% =1
we get
1Ekrll < Yl Ewll (1.17)

which implies—according to Parseval's equality—the following inequality
léxsrll < vléll ' (1.18)

Therefore we can conclude that the betterment process converges in the L2-
norm sense if v is less than unity. However this is impossible unless the denominator
of H(s) vanishes at s=0 as one can see from equation (1.15). This same remark is
also relevent for the C° - type betterment process. In this case and considering the
frequency domain (as was done above) the convergence of the process is assured if

Yo = sup p{Im — H(jw)®} < 1 (1.19)

However this condition is not always satisfied for linear causal systems with
a proper transfer function matrix, because in general for such systems H(s) —
0ass — oo. In view of these arguments the convergence of the mixed type
betterment process can be assured if one can choose the appropriate matrices T’
and ® such that
v =supp{Ilm = (® +Tjw)H(jw)} < 1. (1.20)
-

which leads to the following question : What is the class of lincar dynamical sys-
tems for which such matrices ® and [ exist ? The study of this question and the
question of using other types of betterment process with different function norms
are interesting subjects of research.

Before ending this section it is necessary to mentione that for the above al-
gorithms it is sufficient (but not neccessary) to reset the initial state in each run
however it is necessary that for each run (1.3a) holds. In this case condition 3 of

theorem 2 changes to
yd(0) = yx(0) for all k
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‘ Example 1.1

To see the applicability of the scheme presented in this section. consider the
& following system:

X = AX + Bu
(1.21)
P y=CX
= Where
- Iy
.,‘. .x -
£ 5]
a=|0% ! B=|° c=[0 1 -
Ko -1 =2 1 N
. o
- and the desired output is ;:
N
v, o
ya(t) = 126%(1 - t) (1.22) Al
t € [0,1). The C'-type betterment has been chosen for this example. Since CB =1 IR
o the assumption N
t" o
II = TCB|loo < 1 (1.23) z
3 is now given by: :
~ 1+T<1 ' (1.24)
.." In this particular example we choose the constant I' to be

1o

~—

' F=1 (1.25
- Figure (1.1) shows that in a few iterations (kK = 4) the desired output y4(t) is
, achieved. Finally, it should be noted that it is impossible to choose y(t) = z;(t) as
', output of the system (1.21) because in this case CB = 0 and there exist no I for

which (1.23) can be satisfied.

2.0 Betterment Process Based On The Decomposition Of Functions
o In this section an iterative method for betterment process is developed. The
E; desired output y4(t) is a continuous function defined over the interval (0, T] where
T < oo is a given constant. The desired output y4(t) of a single-input single-
output linear time invariant continuous system is expressed as a linear combination
g of functions from a complete orthonormal set given apriori. The iteration method
is then applied on such decomposition.

_ . 2.1 Theoretical Background
> The following definitions and thecorems are needed in the developement of the
scheme presented in this part.

.............................
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Definition 5. A set of functions o;(t) ¢ = 1,2.... defined on an interval 't).t;,
is said to be orthogonal if

t2 . .
/ ¢i(t)o,(t) dt = {(L’ e (
¢ T

1 t=)

10
-

and orthonormal if in (2.1) the constant k, = 1

Definition 6. The orthonormal set {#:1(t). 02(t)....} is said to be complete if and
only if it is not a subset of a larger orthonormal set.

Let the approximation of f(¢) on {t;,¢,] for a given set of n orthogonal functions
@l(t)a ¢2(t)a ey ¢n(t) be
f(t) = c101(t) + c202(t) + ... + caon(t) (2.2)

the mean square error (MSE) between the true value of f(t) and the approximation
i, cidi(t) is given by

n

2 2
MSE = — /[f(t)—Zc,-é.(t)] dt (2.3)
t

t2 - tl 1 1=1

It can be shown that the best approximation of f(t) on [t|,t;] in the sense of
minimum mean square error is when c¢;,z = 1,2,...,n are chosen as follows

C,'="}','/k,' i=1,2,...,n (24)

where

= /12 £(t) 6i(t) dt

t2
ki= | #%(t)dt

t1

Definition 7. The function f(t) = f(e, N, ®) defined in the interval [t;,t;] is said
to be an € -approximation of a given function f(t) on the interval [t,, t,], with respect
to a chosen set of orthogonal functions described by the vector valued function:

® = [1(t), b2(t), 83(t), .., bn(t)]T

if for a given positive € there exists a number N such that for all t in [t;,t2]
lf-fll<eforn>N

lemma 1. Let the real valued function f(t) be square-integrable on the interval

[t1,t2] then the e-approximation of f(t) with respect to ® is given by

N

fity =3 cdi(t)

1=1
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where ¢; are defined by (2.4) and (2.5) .
S
There are many sets of functions that can be used to represent a function on an -':3-
! interval  [ty,t;]. For examples the sets of  {cos(nut)}. :",;
' {sin(nwt)}. the set of Walsh functions and the set of Legendre functions defined on %
(-1,1] by ~e]
‘ | . o + 1 2
0o(t) = 1/V2, 01(t) = t/3/2,... 6a(t) = 5 Palt)
L. where the Legendre polynomials p,(t) are generated by the formula }'.:
" 1 40, n
. pa(t) = onpl F (t°=-1)
In this part—as previously—the L2 norm will be used. For that reason the
following two theorems (see [6] for proof) will be important in establishing the rela-
tion between the concept of multiplier (linear, continuous time invariant operator)
: and the concept of transfer functions of the space K'(0) which contains all complex N LE‘
. valued functions s — H(s) of the complex variable s, and it is bounded and holo- hehs
i morphic in the open right half plane {s : Re(s) > 0}. K(0) is normed algebra under _;:.'
2 the pointwise multiplication of functions and under the norm {_.‘
A
|H|| = sup [H(s)] <
Re(3)>0
& Theorem 3. (L2- representation theorem) Let M(L2) represent the algebra of all
multipliers in L2. Then there exists an isomorphism of rings such that to each 4 in '.::;'.:
M(L?2) there is assigned a transfer function H in K'(0) satisfying aib
d (i) ;:-.
. L(Af)(s) = H($)L(f)(s) 7N
: for all f in L2 and all Re(s) > 0 N
(ii) K
Al = 1H] _,
' For completeness the L™2-representation theorem is also given. ,:::'_-
! Theorem 4. (L"2-representation theorem) The ring of all multipliers in L"2 is "f:j.
isomorphic with the ring of all n x n matrices over K(0), in such a way that to each o
A of M(L™2) there is assigned A in K(0)"*", called the matrix transfer function of -
N A such that ) :’::.f
3 (LASYs) = AGS)LAs) 2
" for all f in L™2 and all Re(s) > 0 ;':::
g The proofs of the above two theorems are found in [6]. ~
‘ 2.2 Developement Of The Scheme N \
8 :.\'..
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2.2.1 Developement Of The Iteration Method

Let the set {01(t), 92(t),...,®n(t)} represent a set of orthonormal functions
defined on [0. 7] where T > 0 1s a given constant. Consider also the vector valued
function

& = [61(¢), $2(t), #3(t), ..., bn(t)]T

Let j4(t) be the e -approximation of the desired output of a single-input single-
output time invariant continuous system and defined as

ja(t) =Y _ateit) (2.6)
=1

and let the input and the output of the k-th run be respectively e -approximated
by

x(t) =Y Bfei(t) (2.7)
=1

Gi(t) =D afdi(t) (2.8)
1=1

From (2.6) and (2.8) we get

Ex(t) = ga(t) — Ge(t) = Y _(af —af)si(t) (2.9)
=1
In this case we can use the following vector representation
é1(t)
) | #2(t)
a(t) = (85, 85,....85 | .| =B8T(K)2 (2.10)
én(t)
where 3(k) = [3},35,. .. ,B51T Similarly we have
gr(t) = aT(k)®,  a(k) =[a},a},....ap]T (2.11)
and
jat) =d™®  d=laf,af,...,a]" (2.12)

If we consider the C°-type betterment we get for t in (0, T]

n

dpsr(t) = Y BE ou(t) (2.13)

=1

where
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3 = 8F + 4(ad - a}) (2.14)
In vector notation equation (2.14) is equivalent to

Bk + 1) = (k) + y(d — a(k)) (2.15)

Now consider that yx(t) and u(t) are related by a linear operator L as follows :

yr(t) = L(ux(?)) (2.16)
Therefore
g(t) = L(i Bfi(t)) (2.17)
& But since L is linear then -
E'f; (t) = iaﬁ‘ L(#:(t)) (2.18)
=1
In the basis {¢,(2),..., da(t)}, L(#:i(t)) can be written as
L(s:(t)) = ip.-m,-(t) (2.19)
=1
or in vector form
L(®) = P& (2.20)

where P = [p;j] is a n x n constant matrix. Therefore, in vector form (2.18)
can be written as

gr(t) =BT (k)P (2.21)
Using (2.21) and (2.11) we have

a(k) = PT3(k) (2.22)
F’ Plugging (2.22) in (2.14) we get
- Bk +1) = B(k) +v(d = PT3(k)) (2.23)
E or
Bk +1) = (I -yPT)3(k) +~d | (2.24)
z: The convergence of Equation (2.24) and the choice of v are stated in the fol-

lowing theorem.
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Theorem 5.

Let y4(t) be a given desired trajectory defined over a time interval [t;,¢,] and
let ex(t) be as defined in (1.7) and éx(¢) be its € -approximation with respect to &.
Also let

L(®)=PO (2.23)

where P is a .V x .V constant matrix, and L is the linear operator representing the
system. Then
léx] — O0as k — (2.20)

if and only if
(tr(P))? > (N - )|IPl% (2.27)

where ||P||% and trP are the Forbenious norm and the trace of P respectively.
Proof:
From (2.8) we have

Genn(t) = Yok - a0 (2.28)
=1
By letting
elk+1)=[af —af™, ... a8 — a7 (2.29)
we get
Ex1(t) = o7 (k + 1) (2.30)

Also (2.29) can be written as

plk+1)=d-a(k+1) (2.31)
e Now using (2.22) and (2.24) we get from (2.31)
a
A
@(k+1) =d~PT3(k) = vPT(d - a(k)) (2.32)
-
154 or
o e(k+1) = (I = vPT)p(k) (2.33)
v Without loss of generality it is assumed that the basis is orthonormal therfore we
o conclude using the definition of L-2 norm
! T
o~ “ék+lu = [[) éiﬂ(t)‘ltll/z
'-"
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léx]] = [Z (sﬂf“)z] = |lp(k + 1) (2.34)

[/

1=1

‘.ﬁ

To simplify the notation let

b B

F=I~+PT (2.35)
(2.33). (2.34) and (2.35) imply that

oin.

o e,

LA

t!li
>

—

o

(]

(o2}
PRI
Y ‘s

léx+1ll = | F(k)l

Consider the Forbenious norm of the matrix F which is equal by definition to

LLll
LI §
AN

.

Y

T

|Fllp = [tr(FTF))*/? (2.37)

AT

then it can be shown that for any v,w in R™ we have

e e
w

E: |Foll < |EYlF il (2.38)
. in particular

SR,
f:’.ﬂ,.«, 1

2 IFe(k) < IFlIF le(k) (2.39)
By letting ||F||F = p and by choosing v such that 0 < p < 1 (2.39) implies that

o
*r:‘-‘.". a

T
\g ekl < plléll (2.40)

or

~a LYY S ¢
[ofigh

» 'ti_

) v

0 < ||ékll € P*lléll — 0 as k — oo (2.41)

a Il;‘l "‘- .'-l

¥

E:: In this case the algorithm (2.24) converges in the sense of (2.41). If we plug (2.35)
C in (2.37) we get

v

s tr(FTF) = [v¥||P)|% — 24tr(P) + tr(I)) (2.42)

For tr(I)= n we get

St v

=3
o

tr(FTF) = [v*||P||% — 29tr(P) + n] (2.43)

Equation (2.43) is quadratic in ¥. There will be always an a for which (2.43) is < 1
except when e

eld

(tr(P))? < (n = D|IP|} (2.44)

In this case p is > 1 for all ¥ and the algorithm (2.24) diverges.

l. 1"‘
et

2.3 Remarks and Discussion
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! ! At the end of this subsection two points need to be mentionned: The first R
point is that as in the case of CP-type betterrment it can be shown (using the -:_:.
RS L2-representation theorem) that if the transfer function of the causal system under ~
-:: test is proper, the algorithm (2.24) may diverge. The second point is that in this .
section the Forbenious norm was chosen mainly because it is relatively easy and -
3 inexpensive (computer time) to numerically compute. In future work other matrix
o norms will have to be tested and their relations to the rate of convergence of the s
. - ‘h
algorithm should be determined. p
.. .
L, -
= :
Example 2.1
e The applicability of the result of theorem 3 is illustrated in this example. Con- o
2 sider the first order linear time invariant system described by the following transfer t-:
function: , o
o .
w
s+.89 :
F(s) =100———= p
(s) s+0.9 .
For easy checking with analytic result let the desired output y4(t) be: -
{-
i ya(t) = 3.46410t — 0.73205 N
which can also be written as in (2.6) ]
. "
w Ja(t) = c161(t) + c202(t) X
N where ¢
o N,
_— >
¢ =1 o
LY -
> =1 3
e
and ,
i‘ a(t)=1 -
) d2(t) =2,/3t = /3 S
o are two Legendre functions. In this case N = 2 and o
: P [99.62 —.19} N
i, .19 99.94 R
b
. ~
N the condition (2.27) is satisfied and the algorithm (2.24) converges in two iterations ~
{ as it is shown in figure(2.1) -
-~ . . 2
7 3.0 Comparison of Learning Algorithms g
. I
[ 13 -
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! In this part a comparison between the 2 methods introduced above is presented.
Based on the decomposition technique and the anology with the C!-type betterment

° an extension and generalization of the method of section 2 are presented.

N

m 3.1 An Extended Algorithm

g Let us now use the decomposition technique on the C!-type betterment. Again
using the same notation as in part 2 we will have :

,:,\

[Py -

A Jalt)=d® (3.1)

gal(t) = a’ (k) (3.2)

e

- k)= 3T(k)® (3.3)

. From the C'-type betterment formula we get

= d

ak+l(t)=ak(t)*‘éa{gd(t)—gk(”} (3.4)

"

- or

i 3T(k + 1)@ = 3T (k)@ + 8(d7 - T (k)4 3.3)
Let

n

&1(5) =7201.0:(t)

1=1

\-’. d-sn(t) = Zamél(t)
. =1
‘L or in vector form
N o1(t) ay; a2 - Qpn o1(t)
o = (3.7)
Yl: ¢n(t) dny Qn2 " Qnn Onl(t)
. therefore
"o .
P =Ad (3.8)
f; Using (3.8) in equation (3.5) we get
N 3T(k+1) = 3Tk + o(dT - aT(k))Ad (3.9)

i Let P be the matrix of the operator L in the basis [0,(t)] i.e.




[ 1O

%4

-

. L(®)= PP

g therefore

- a(k) = PT3(k) (3.10)
. Now we have

%
[ 3Tk +1) = 3T(k)® + 8(d7 - 3T(k)P)A®
" = (3T(k)(I = 8P4} +8dT 4)® (3.11)
L)
o
3(k+1) = (I -64ATPTI3(k) +64Td (3.12)
u} If we let
" PA =R (3.13)
- ATd=V (3.14)
ﬁ then equation (3.12) becomes
B(k+1)=[I - §RT|B(k) + 6V (3.13)
;l: Equation (3.15) and (2.24) are very similar therefore we can conclude that the
CP-type betterment and C!-type betterment are just two different ways of writing
! the limitimg case of algorithm (2.24). On the other hand, one should notice that
o equation (3.12) can be also arranged in the {ollowing way. Let
' M =6AT (3.16)
‘--
then using (3.16) we can write (3.12) as
L,
" Bk +1) = (I -MPT)3(k)+ Md (3.17)
This important result is generalized and discussed in the next subsection.
i
2, 3.2 Generalization Of The Algorithm
W The method of section 2 and the extended algorithm of subsection 3.1 (equation
3.17)) can be combined in the following way. Assume (like in the case of mixed type
< betterment) that the ¢ -approximation of the k + 1 input ux4;(t) is given by the
L following iteration:
- : . ~ N d . .
&,_ ey (8) = Ge(t) + Y(Ga(t) = Gil)) + 8= {Fa(t) = Ga(t)) (3.18)
15
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then .
3Tk +1)=3Th)@ +1(d" - aT(k)d + &d” - aT (k)b
let
L(d)=PP
therefore

atk) = PT3(k)

which gives

3Tk +1) = 3T(k)® + wd" - 3T(k)P)® + 8(dT - 3T(k)P) 4D
3Ttk +1) = (3T([I = +P = PA] + dT[+] + 04]} &
which implies that
3k +1)=[I~+PT = 6ATPT)3(k) + 7] +64AT)d
Let

Q=~I+64AT

then we can arrange (3.23) as

3(k+1) = (I - QPT|3(k) + Qd

l3-_1

(3.23

13.24)

(3.25)

where Q is a constant n x n gain matrix. Equation (3.23) can be therefore

considered as a generalization of equation (3.17) and equation (2.24)

The convergence of tha above algorithm is given by the following theorem

Theorem 6. For the problem considered in theorem 5 and a given desired trajec-
tory y4(t) defined over the time interval [ty,t;], and for a given set of orthogonai
functions defined by the vector valued function ® if there exists a constant N x .\

matrix Q which.satisfies the following condition
II-QPT|r<1

then
lléx]] — 0 as & —

Proof:

In the previous subsection we dcfined

Expr(t) = pT(k+1)d

where

16

(3.26)

-~ ." RA SRR . - g o] -~ - r A ad - I.. N -" -.' '. .“ I“ Q-' \.‘ l.. .
B N A N B O N N e T N T g

N AN

13

| ..f..f.'l5(~f$r‘.f

P PRI

0

AAL50N)

A AN

Bl AL A

TR T
(RN

&

Cp e EL AL N
Il,\lsf"l' S

/

-,

. ,1.. -’.-‘0' v

ol

b

o

R
st

LA
3



-.‘ -" -..

e -

o

-
&

U PR VOO S

B R A ‘A l"a 1'a &% u, - aboopltosak v TR W )

slhk+1)=

using iteration formula (3.25) we get
flk+ 1) = 2tk = PTQuck)
50
Fk+ 1) =(1-PTQ)zk)
or
2k +1)=Fzik)

where F is a n x n matrix defined by

F=1-P7Q

If we use the Forbenious norm for the matrix F and the L2-norm for the vectors
£tk +1) and 2(k) then the inequality (2.30) implies that

le(k+) S IIF)lF fle(h)]]
Let

|Fllr=p20
then by choosing Q such that

0<p<l

we have

|[éx]| — 0 as k — o<

and the convergence is assured. From (3.23) it is clear that if P~! exists then the
best choice will be @ = P~T. In this case we have (k) = P~Td for all k > 0 and

the algorithm converges in one step.

Example 3.1
Consider the following system:

r = Jdr + Bu
y=Cr
17
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where

-1 =9

e[ 8] aefy enn

and the desired output is

yqrt) = 12f2(1 —-1t)

for t in [0.1]. For this system the condition {2.27) of theorem 3 is not satisfied.
however by choosing a set of 4 Legendre functions with a matrix Q

-100.58 177.64 ~166.63 190.80
_ 1 —=176.70 280.0 ~-272.10 302.15
Q= -165.80 270.66 -304.80 311.0
—190.70 299.10 -308.60 230.50

for which the condition of theorem 6 is satisfied. yi(¢) converges to yq(t) in 4 it-
erations as it is shown in figure (3.1). We notice also that since in this example
CB = 0. the conditions for the convergence of the C!-type betterment as has been
shown in [3]. [4] are not satisfied. Figure (3.2) shows the divergence of y,(t) from
the desired trajectory yq4(t) as the number of iteration k gets larger. However. for a
svstem with the same matrices 4 and B as the system considered in this example
but with matrix C equal to :

the C!'-type betterment converges as it is shown in figure (1.1).

3.4 Remarks And Discussion

In this part an iterative method which can be considered as the generalized
version of the algorithm (2.24) was developed. This method is also based on the
assumption that the system should be linear time invariant and continuous and
that the desired output y4(t) should be given on the entire interval [0.T]. The
Convergence of the algorithm, then depends only on the possibility of finding a
matrix Q such that the Forbenious norm of the matrix F is less than unity. As far
as the numerical considerations are concerned the algorithm developed in this part
is easy to implement. Except for the decomposition of the desired output y4(t),
there is no integration or derivation to be computed. Furthermore. this algorithm
will converge in one step if the inverse of the matrix P can be numerically computed.
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On the Design of Time-Varying Controtler for
Producing Desired System Responses*

Hin-Yen Wu

Abstract:

It is well known that in linear time-
invariant design, response speed and accuracy
tend to be conflicting requirements that cannot
be achieved simultaneously. For example, fast
response alwavs results in a large overshoot,
Fast response without overshoot is desirable in
many aoplications such as robot manipulator
control. In this paper, it will be demonstrated
that the use of time-varying controller can
produce a response with short rise time, no
overshoot and short settling time that are
impossible to attain with conventional time-
invariant design, Methods of designing the
time-varying controller will be discussed. In
particular, the method of dynamic pole assign-
ment and the use of piecewise-constant time-
varying feedback gain implementation will be
emphasized.

1. Introduction

In linear time-invariant system design, the
performance requirements of fast response and
good accuracy tend to conflict with each other.
So compromises often have to be made. To ensure
overall satisfactory performances, time-varying
controller that adapts itself to yield optimal .
performances is needed. In this paper it will
be demonstrated that the use of time-varying
controller can produce a desired resnonse with
short rise time, no overshoot and short settling
time, which are impossible to attain with con-
ventional time-invariant design. It is whown
that with time-varying controller, not only the
overall performances are improved, but the -
system stability requirement is also greatly
relaxed. In contrast to the linear time-
invariant design which requires all eigenvalues
(or the poles) of the system to be in the open

*This research is supported in part by the
Office of Naval Research under Contract N0OO14-K-
0425, ) .

SN PGINA ‘.ra‘e‘a‘e*e‘¢“a*;? N O N N T N

DepartmeniABf Electrical and Computer Ennineering
University of Colorado, Boulder, CO 80309

left half complex plane, the time-varying control-
ler may allow the overall system eigenvaiues to
be moving in the complex plane, even in the onen
right half complex plane for scme intervals of
time, provided that at the end the eiqenvalues

of the systems are placed at some desired steady-
state pole locations in the open left half
complex plane to insure the overall system stabil-
ity. The idea of allcwing the poles (the eigen-
values) to move around makes it possible to -
achieve a response with short rise time, no
overshcot and short settling time, which are
impossible to attainin time-invariant design,
Several methods of desiqning the time-varying
controller will be discussed. A new concept of
employing dynamic pole assignran= girm “io-znica
constant time-varying feedback Jain rar tine
controller will be emphasized.

[I. Controller Cesign Methods
The problem considered is as follows: Given

a plant with transfer function 5(s) or it is
defined by its state representation

x(2) = A x (£) + Bu(2) _ (1a)
y(t) = € x (¢) (b

where x(£)zR", u(t)eR and y(¢)eR. Also qiven is _
a desired response y_(¢) to a given input. The
objective is to desiyn a controller so that uy (2
can be achieved.

If the requirements for vy (t) are such as
the rise time, the overshoot aﬁd the settling
time are not very stringent, then conventional
lead-lag compensator [1]} or the state feedback
with constant gain matrix (2] will be adequate.

_However, if y (¢) is required to have very fast
response withBut overshoot, for example, y (¢)

.Js to approximate, y_ (t) =1 - exp(-tz). fhen
one has to resort to 8ither time-varyinq or non-
_linear controller. Unfortunately, the stability
of linear time varying system (3] or the non-
1inear systems [4] are very difficult to assure.
In this paper, several controller design methods
that will assure stability will be discussed.
One particular method which uses piecewise
constant time-varying state feedback will be
emphasized.

. ',“.-.r_'-r A R

Lt

‘.&f E 8

%

22

of £ XY
o a

<

/’

s s
€ 1 s

& e @' o

L)
[

~
P

s e

Bt VN

L 8 ]

LA I
e
't

ey

N

’,

D A

>~
»

VP A |

g

s »
L s

P4 J"I .

/o
2 NN

el

'

s 4 "

.
.

.

Bl

.

RN WY

r ‘s Ta e

A

{

U

“

(IN

3



Cps

A

0

/s

YRR

(I) Optimal Control Trackiné Problem Approach {5]

The optimal control theory can be used to
design the controller so that the output of the
system will track the desired response yd(t).
The controller is to be designed according to
some chosen performance index. In such design,
the controller turns out to be a time-varying
controller which requires the solution of a
matrix Riccati operation, Hence the controller
is difficult to implement. Furthermore, the
choice of weighting matrices in the performance
index for guaranteeing the desired response is
not transparent. -

(II) Multi-Segment Decomposition of Desired
Response Approach

A time-invariant system may not produce the

desired response over the entire interval of

operation. However, by decomposing the desired
response into several finite subintervals, say N,
itis possible to approximate the desired response
by a linear time-invariant system over each
interval of interest. Although the system
appears to be linear time-invariant over a given
subinterval, it is time-varying and nonlinear
over the entire course of operation. Under the
multi-segment decomposition approach, two con-
troller design methods are considered:

(a) DOirect Control Law Generation “ethod
From the desired response ud(t) over the

interval ¢ {¢., ¢t i, =0, 1, 27 . .N-1, one
determines thé’ coﬁ-espond1ng desired state x(¢ )

and x{t. .}. The control law U(t) for es(c;, 20 !
that ~\1T transfer x(¢.j to x(£ ) is generated
as follows:
ulel « -8 expiA (e.-e}Q7Y £t -
- < I8 !
(x e - expt -t 'l (2)
- [ = el
: ele e,
wnere CL A et LAt e
nt : [ A “ ! < .o
7.((, i e B8 e 1 .z,

The zontroller ts agatn a3 t1me-varyirq zgontrnller
whizn '§ 31€€:-yir v5 ~mplement, Ine m0d1¢"eq
ADDrIaCh 1S %D WwOrk «'th the 315cretcced Dlant
and ‘0 jererate a sequence of 1iscrete ontrol
Taws.  In tM's case, 3 mylttr-rate sampling mav
nave °0 Ye ermpinyed, lejenqing On *'he Znaricler-

165125 1€ cme gesireq ~egoonce which <11l zall

for ~or-oqua’ ‘enitnh )f jeqments N tne 1eCcNmpIst-
*esm o 2f 5 . Thag apprnach 15 not sery stravant
forwar?,

- Trecewrna Instart [tate ‘eedqbdck Approach

Th oem

5oa5CTmaTn, tre les red resnonse

o sar o3 = Lamert 5 '3 na 3zdreteae ed
wttn oy tTeear el myaecant 5y50em w1t tes red
2ole ooyt omg The tpgired respirie “ver tTe

anc ra  ~tpe L3 ¢ aTerytoan G ST Le jycnteved
ther o, im o tme t,rymr maegcement L F Dale Ts5cattocns,
The *@-yAr. ry rrtrniTer w1l tTen 1ansc6t 0f

a sequence of piecewise constant gain matrices
which can be easily desiqned. The stability
assurance and gain computations will be given in
Section III. A design example that illustrates
the procedures is given in Section IV.

III. Key Results for Piecewise Constant
Time-Varying Controller Design
Theorem 1. {Stability Assurance)
Consider the system (1). Assume that /A,3)

is completely controllable. Then there exists
a set of constant matrices K., ¢=0, !, 2, . . N-1
such that with the state feedback u(¢! = witl -
K(t) x (2], where

+ [z 2 H-
Ll ; K, telt e, 0 <=0, 1,2, . -1
’
KN_1 te 1y (4)
the eigenvalues of At} = A - 8KiZ) can be
arbitrarily assigned over each 1nterva1 el L0

Furthermore, if all eigenvalues of Ay_s 1A R
have negative real parts, then the SySLEﬂ is S;Sble

Proof
The pole assignment part is well known

because (A,8) is completely controllable.
the stability part will be proved.

So only

For any bounded input v{t) we have for

tt.[( L. ")
Aratd (t AL je--)
xitiee © 0 Cxle e e C 0 Buitid: {5)
- ‘:L' R
where A. = A - 8K., (=0, I, 2, .N-2, and AL is

not reqdired to b& stable.

Since the linear system can not have finite
escape time, hence x:¢, <= for all Qcgeg <=,

Now for o8y - . N -
¢- ¢ -
. Aoy 8 eA%-l“ Boeea e
1ti-e iy & v {6)
Clearly “xf2'' w= ¥ &2 ¢, bacause Alzi=4, ‘ for

sty and 311 ergenvalues 'of A, . nave realisarts,
Hence x.¢' '<» ¥¢~0 and the s9stem 15 stable. —

Comment :

"he only requiremen! for ASSuring the
stadylnty vs that Arer A, for 7 3 2, and A,
be stable. A 's for (-N-1"afe not requyred to"
be 3table. This €lexibility permits some A; ‘o
pe ,nstable, 2articularly 'n the tnit1al phase of
aperation, for fast response. -

-1

Lemma | (Bass-Guru formula)
fonsider *he system (1), et {fsi be the
characterystic polynominal of A qgfven 5y o
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* where xT

A}

dis) = s"ea sl e vg (7)
n

Let x(s) be the desired characteristic poly-
nominal for the system with the state feedback
uftl = viz) - Kxlz)., Llet x{s) be given by

n n-1 - R
s) = + + ...

afs) = s" + ays ta, (8)

If the system (1) is completely controllable,
then the state feedback gain K a]ways exists and
K can be computed by

-1 -1
K= (2 - aDs g (9)
where
T,
5-(1,,42,.....,an1
Ty
E-Q‘]:a’z,:r::ﬁ;un)

S is a upper triangular Toeplitz matrix
with first row (1, a 23 v o - an_l) and

Q is the controllability matrix of (1)
given by

Q= (B, A8, . ....A"g

The proof can be found in [6], hence it is omitted.

Theorem 2 (Piecewise Constant Controller Design)

Consider the system (1). For a given input
v(£) let the desired response y_(t) be partitioned
into N f1nite segments so that 4 (¢) for
tele., ] be characterized by § set of desired
elgeﬁva $oés CelyT, 420, 1, 2, . JN-1, J 1, 2,

. . ., hand Re(yV 2j)<0 for all j=1, . . oM.
Then there exists a piecewise constant t}me-
varying state feedback K{t), as defined in (4),
that will produce a desired stable response
Furthermore, K; in (4) can be computed from
o=l -ah sTleT o, 1, 7, L N1 (10)
2 (a0, Tny o o ) is the now

vector ¥ssociited ¥fth the charé?terist1c paly-
nominal - c

n
= m (s-vif){N)
5=
and‘gT. S, and Q are as defined in Lerma 1.

n n-1
R +q. +. . taL
“:.(s) =5 ;s %

Proof

x
v

T

»

(.

ilable to D

gl\la

¢rpy ave
fogmit pully 1

Theorem 2 follows from combinations of
Theorem 1 and Lemma 1. - . ——

Iv. —Design Example

Consider a plaﬁt with transfer function G(s)«
1/s°. Suppose the desired response ud(tl to a
unit step input is as shown in Fig,

TIC does DR
1¢ pxcducuon

Such a desired response can be described by

FIel + 2 sie) g (£) + yl2) = 1 (i2)
with the damping ratio 5!t} given by
-1.0 ¢e(0, 0.7)
Tt = 0.5 2e{0.7, 1.3} (13}
v 4 1.3

or equivalently by the desired eiqgenvalues

(Ygrs Ygp! = (1,1)
G il s (cois = 4 0,866
(Yays Yool = 1-0.13, -7.87) (18)

It can easily be seen that for the impiemen-
tation shown in Fig. 2 the piecewise constant
time-varying controller gain Ki¢) is given by

KO = (1, 2) t=(0Q, 0.7)
Kig)=Y ¥y = (1, 1) 2[0.7, 1.3)
!
i % = (1, 8) t21.3 (1s3
The pole movement in the complex plane is shown
in Fig. 3
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Control'er Cesign of a Muiti-.ornt 000t “an'oulatsr

Min=-7/en du

N.M
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Jeparzment af Siectrrcal and Zomouter Engineertneg
university of Coioraco. 3ouiger. 20 30339

Adstraes:

Feedback 'inearization theory 'n d1f€erent:al jeo-
metric control theory s used 'n CaNJunceiIon with Z:ma=
7arying state feeddacx 0 dJesign the <:me=varying control-
‘er for a muiti-joint ropot maniguiator contral. A 3-loint
rogot mantoulator 's used as an example %5 evaluate the
controiler performances. Simylation results snow great
premise of emoloying time~varying controiler o acnieve
?o::lr dynamic control over that of Cime='nvarrant control-

er.

[. [Introduction

Imoelled by concerns about sroauctivity, worker
shortage, ang nostile environments, ‘nterest 'n rofot:cs
has grown expiosively 1n the last severai years. Most
fndustrial robots are dasically computer controiled mechan-
ical manipulators wnich can de programmed 20 cerform the
tasxks, with minimum or no human intervention, of arc weld-
ing, paint soraying, assemdly, foundry speration, etc. A
maniouiator consists of a series of links wnich are zon-
nectad at joints. Typically they have three to six jotnts
(three 0 six degrees of freedom) with a gripoer or endg
effeczor. The Joint can De either a revoiute -joint for
rotational motion 3r 2 orismatic joint for transiaticnal
motion. Each joint is driven by an acTUALOr wnich is
commanded by the controller.

The motion of <he robot manipulator 'S desired %0 be
fast, smooth, and accurate. The open-icop contral method
1S not satisfatory because of variable 'nertia, gravity
loaging and 'oad disturoances. Therefaore :he aynamic can-
trol of the robot manipuiator is often of closea-'oco
control. The gesign of controller for the servo system
deoends on the iynamical model of the systam %0 de controi-
led. The dynamic equations of a robot mantpuiator can se
obtained either dy Lagrangian fermulation or <he Newton-
Euler formulation [1-2]. These dynamic equations are
higniy noniinesr anag strongly couoied differenttial equa-
ttons. [n the past, *he controller design 1s mostly Jasea
on :ndependent joint cantrol (1-2), lineartzattion and feea-
forwara compensation (3-4]. One best xnown examole of such
aporoaches 13 the 'computed torque’ technigue (1] or the
'inverse prodblem’ tecnnique ({5]. These technigues require
eitner the manipulator iinus Detng weakly counled, or eacn
1inx deing controlled one at a time and orecise xnowiedqe
of rodot manipulator dynamics de known. Such tachniques
become less effective for nigh speed and acturats control.
[t aiso often requires excessiveiy large control torques
or forces from the actuators.

Recent advancas in differential geometric control
theory 6-9] provide necessary and suffictent conaitions
for transforming a qiven nonlinear system around a given
point into a local feeaback-equivalent linear systes.

These resuits are found %o de particularly useful 2o rocot-
fcs aoplications Because the Kronecker indices for such
systems are mostly less than or equal to 2. With oroper
coordinate transformation and feedback transformation, ’ne
hignly nonlinear and coupled robotic equitions can de

-, 078-932-1
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transformed ‘NtO i et 3f Jecludiac secong-crier | rear
lymamical equations. onsequent!/, sar‘ous I3ntn3 Car
design zechnicues “Or ‘near systems tecome ipD 21T .

"he .se of feeudack 'inmeartzation i1DOr2acn I3 ies'3n -sgot
controi.er are ~eported o jive sery joca s:muidtesn
resuits (7, 3, 10].

fn h1s pacer, ~e snall fi~st snow now Ine feealacx
!inear1zation Zechnigue can Je used <3 =ransfsrm a'gniy
noniinear ang coudied ~200C1C eQuations :nt3 a set Jf se-
coupled second-order iinear system aquations. Then I3n-
troller desi1gn casea 3n Zime~vary'ng state feeddacx «11°
be 1iscussed. Finaliy, comouter simuiations “or i J-:!3tint
robat mamipulator controi are oresented. The si1Muiatizn
results showea cCleariy tne cotent:al af a *‘me=-vary'nq :3n-
troiller for achreving raster ina iCIurite response %%
smaiier control 2fforcs znan 2 convent:ionai ::me-'Tvar-anc
controller.

I1. ™ain lesuits
Definition !, «ronecker naices

The Kronecxer 'ndices “Or a matrex zair A, 3) are
defined as ‘oilows: .et R, and ¢ De jefireg is:

R, 2 (B8, 48, . . .,4 3]

|

; 1’”“1 - gimR,

-

where ) 2 |, 2. are 1ntegers, =1MRi 1$ :ne 3imension of

R, ang aimﬂo = 3. Then for an 'nteger

‘naex K, 1s defined o e the 0tai tumoer af I, wn1cn are
4

5. the <ronecxer

greater than or equal o §, '.9.,
Kj T (et 2 )
Oefinstion 2. Involutiveness
- v 2 K,
Let Cx(X A7, ..., £7) e a set If ;mooth .ec%ar

fields in " I th l‘(g)...., x‘{g) devng '‘nearly ‘ndepen-
dent for some point 3. Then the set I 13 savd 2 & 'n-
volutive, If for any !’, xJ:C. there exi3ts smooth. -ea!

ts [3
valuea functions (a “(x)},, such Inat the Lie sroducs

K
[x',xJ](l) 2L ,;1(1,X“Q9 for 1 'n the netqndormeoq >f >
msi =

Theorem ' Myltt-{nput Feeddacx .inear'zation ““eorem

Consigar the multi-'nput nonlinear system of <Na ‘arm

. n {
P XO(L] el w{xxix) (N
izl
n 0 1 .
where xeR . A7(x) ana X (x), v =V, &, ... A, ure smoot~
vector ‘teids 'n 2" 4ng g, vl 2 a are cea

valued smooth scalar functtons. Let 3 de the po'nt of
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‘ntarest “Ir inear-zatian. The ~eCesSary 1ng suff-c-ent

cen@riions “ar tne system (1) ~1Th <ronecxer ‘ngices <. 3

‘rear tcve-

€5 2...2 € T2 e “seadacx eQu)vaient D ine

1AVAr 3t zancnicai ‘orem
iy + 3u 2!
anere - L - [ 1.
I3 -0
A agA AL, L., A ) eitn A, 2 | s e s e
- | ’ N A
333
( 223 -3 <
. . v - . <
ang 3 = [, ... mtn 3 =200, ..., ", 0, D)

J€1NG an 1 X | JeCIIr with | °*n the < :smoonent aing
leros 2isewnere, -
are

(1) There axist ~eal {a,}

(i1) aimC{g) = n (local controilapiliity zest), wnere C s

L G
- ] . - -
C = fx’, (aax“.xl)_ ... (ag xj.x DR acJJ.t“.
Q2 2 a b WS o
coufaa Tt s M aak? M a2 )T
with (aaX.)=Y, (aak.1)F0XLYY, L et e)eie. aa< T e 0],

de1ng the Lie oroduct "otations [X.1]=(‘{1)Y(5'-'(1i1x(51
and X , Y
i X

are tne Jacootan of X ang Y ~1th respec: o X.

the set [, daf'ned as
\ . <=2 . 5 )
e Y axtraaxd L cae VTR 8L raan Y,

vy =
K -2

X
el f(ad AN taa ™

{(11%) For eacnr=l 2 ..., |

-
! “XJ‘XZ);_“; xn, (adxg
is 1avolutive.

The oroof far cheorem 1 can de found ‘n (6. 3].
Theorem 2. (Feeabacx Linearization of 2oootic fguation)
Cansider :he aynamic equation of a n=10i1nt 000t

manigulator, given oy
O(g)d * H(q, q) * &(q) = 2 (3)

where g=(q’.:z..... an)t iy the joint position vecsor,
0(g} 1s an n x n matrix representing effective and :ouoled
inertia, H(gq, ;) is an n x ] vector representing <ne Can<
tripetal and Corvaiis terms and G(gq) is an n x ! vecTor
representing the gravity loading terms. (et Jirx:1_; and

di:'21' i-sl, 2,..., N be cnosen as state vartadles and

rewrite (3) as :n (1), where 10(1)=(xz,f,(5). *y, fyix), ..
t { - [

R !ﬂ(g)] anag X ()=00, 9, ..., 1, 0,...,2]%,

tal, 2, ..., n, is an 2n x | vector with | in the 24

‘element ana zeros eisewnere, u,(2) is the contrsl wnich

contains a nonlinear comoination of some toraues or forces

T, ang f (x) ts a smooth real function of 1 for all i,

Let p e the equilibrium point of (1) for u,{x)=0 “or ail i.

Then cthe coordinate transformation ;3¢ and :he feeadack

transformation u (x)3=f (x}euy, 121, 2, ., v wtn g,

being 4 new free control, wtll transfsrm (1) 'ntg 1 ‘eed-
back equivaient linear time='nvarrant zanonical ‘grm . 2)
where {
40 !
Ay o } vt 3 1,2, ... (4)

. _Q78-032-}

e o ey
-~ ('f_f~f“¢‘f (hf\i SO AL

LYY

"N gl T\ ‘o A% A, U
ang
3,0 .3, : : b
SR N I .ecTsr arm M Tte o s ement 7% Iens eoii
ahere
2ragf 3 “hegrem
FirgD, ~@ SNCw T™aL t~e <ranecxar ""g Ies ‘Ir sysiem
1V careesgonaing Ty 1) ire 20ud I3 T ess ttan [
Since .k g AET SR T T I P P P
with ¢ 2iement zeing 1ng zeras 2isewnere, -'eariy U =
. PR .
[ AL NEL T LR SN CON- TP 1-F S S-SR 1 S - B
o3, s
Bl : : s N .
! S f. !
! — b : —— -
i 3k, = - k., =
[ 3 - 5 M
Lol 3 2 3 : !
| 3f, 3fF |
.= - — - —_— '
REE] ik = AL = |
L )
- 3 - 3 -
3f if EA I
—_—n 3 — . —_— . !
?ome YIRS i. =/
- hd -
Mence 21mMR.2n. ! “silows thag i.:n, 0=2i, 2, ang i =0 far
' > 3, Thererore che <ronecker ‘'‘ndices ire < =2, viz. 2

... ", ana 20 for 1 > A, shen <. 5 I YV, the Isngriion

(i11) 'n theorem | ‘s ‘moilea 2y zon@12:3m ' *v'. S0 %3

establisn ‘eeadack equivaience we need =3 Inecx anly Zamer-

o

tions (1) and {ii) 'n =heorem 1. Since ( conaizion

(1) 's satisfied wrth 3,30 VN

£i29,
Since 1tmCl2)23ImR, 520, *he
system (1} s ‘ocaily zontroilaple at 3. So zma=izn %)

of theorem | -s satisfiea. .[n -acz. all =uree :ongricns

.

of theorem | are satistied. Therefore systam (') zan da2

made %0 de feeadback equivaient =3 (2). “ore expi'c¢c-tly, %

can De snNOwn That Zne <oordinate transrormation Y2 ana e

feeabacx cranstormation u (xI3-f (xj*u, =111 transrors (1)

fnto (2} with A and 3, 45 iven 'n (3],
Comments:

1. Theorem 2 shows nat ~1%h “eeaback 'irear it an, the
hignly nonlinear ang strongiy lcupied ~2B0TIC equat:ans zan
be transformed nto i set 3f 1 lecoupied secong-rrcar
Tinear time-'nvaryant zanonical “orm with 20u0.ie 301es ag
the origin.

2. The smoothness requirement 3n vectsr fieigg n ()
grevents :ine ipoi1catian 3f ‘eecbick 'inearrzatian 23
system with violent nonitnear t:es such as stc2ion ang
coulomd fricTion wnicn are diways oresent 'n actuatars at
robot jownts. Such effects can 3e removed ‘rom the ymamic
model and de compensated later 3y feedforward :smoensat-on.

[I11. Controlier Jesign

The objective of the rocot Mmamiouiatar -ant-si s %3

move he manipuiatar ‘rom 2 jJiven 101nt 203:%Ygn

LN P
P

X, t0 the lesired :91nC J0s1tion x,, x.. R DR
nei ] N

Equivalently, via the coorginate <ransfarm, Shis ‘g che

sropiem 3f =gving ‘rcm

e states y.. y,, Samn: 9
- ek

desired sTATES y., sy --.v Sap ;- (T 'S Zesitadie 3 50
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R RN B A abnds atatats ate gt tal, " 4k b vag el at

+3 - cesireg SCIT2S A tRe sMertest ITme 2035i%te ~1CRout
2JusS1 g dny 3versnoot Ir Jrogucng steady-1tate errar °n
the response. [t ‘s 2it0 'moOrant 3 acnieve such iDjec-
s*ves =ith 13 1T I3ntral offort3 the aCTudlar tarcues
3r ‘3rzes) 13 zo03313)e  2f 3urse tNe s1mpitcily cm moies
“enc ng e 13ntrailer "as %0 Aiways e <eot ' ving,

Af=gr 2te 700l 1near ~000CIC equalion '3 Zynverzea ‘nt3y IS
‘eeqnacx equivaient 'inear zanonical “‘orm, sarvsusg zantrai-
‘er zesign Zacamicues “3r inear Systems Secime ipoircaole.
The :3MventTOnai ISNITANT STaCe “eeclacX e31§N pros I3
JIve Sicwer “esCerses Ir T3 -ecCulre arser Iint-zi affaprny

Than itcse Iesited. e 9TTTal ersar

er 37 -eguireg me extEngive ITSMOLIATIINS 1T e Tatrt

Ftzzatt 2qudltzn. (1 1S zdcer. «~e I3nscCer

cimg=varving slate “eeqpacx Iontroeier 3f tne

‘ar=:

PP I R PRI R ZYUPER AL SURE N £

wnere <., _,.%! ang €, %! are Jespectivery 1Ne ti7e-

saPytAg I5$1T12n aNG se1QCrty ‘eeadack jains. v

~eference "AOUL 4nd 4, 'S INE “ew ‘Tes 23nCrIt A

ltnear zanonmica: ‘srm.

Jsing Ne -esratisns Cn cgordinate transtormation and
‘eeapacx “rans’armatoan, he 13ntrai function 4. x) cn 1)

's 3iven 3y

J(\1.=",,1)’<:!_;\:)(x: '.'21-i;'(:1‘::"’1 (61

2.
mnkre ¢ 1) "3 A jIven notnearem I, fo, . 40 Xy,

tml, 2,.... 0 are e ji.en ird lasired (51Nt lgsiliang.

The actuatar z3ntrai carcues Jr ‘orces v (1%, 2,
. 1) are 1otairea 3y soiving ‘or - ‘rom tne jets of

equattons L 1), =20 L,

In oractize. 4il aczuatars “ave Therr maximum Cimies
an

1r zantral tarques ar ‘arces. 30 'n ‘esigning he

zanerailer, ne zsastrane e (%) 8 ¢, for all g em=
LT B SO

Jased. The lve-varying ‘eeadack jarn L.,

w111 Se 50 Zhosen T3 MARIMIZe I ~es00Nse s0eeg ina the

accuracy «1thoul Tausing zzneral tarcues ar ‘orces )
excaad %3 ‘mi=s. "o maintaim zreescaily camped -espanse

i . —
for ail %, 't ‘s -equired tMat S %KL, ol
ot b

“he arocadures ‘or :l;|qn|nq the T'mMeevary'ng Isntridis

‘er are SWITRAr- led eidw:

‘nitraiize K,,_ ;4@ ‘nout °

2. lomoute X, 30K.,
J. Aead oy L fayle and x.,

4 iomoute u,(x) from (6) ana solve ‘ar -

¥y

cnecx %o ses f e[ 3%
5. 3ased 3n steo 3. .odate <., . dnd (.,

Y. *mg zantrai Iycle '3 Jone enen «., . "3 -sacred "Of
YRS P -

Jiscussiens e L20dC°"g

“he L0G4TE OF “ime=waAryiec j3ieg <. oana . 2R e

Jore 3y emioy'ng

iynamic 23.e ~anagerent T:T°TCue

231D se oather .0QaCing sCnemes. e .ccat -3y

.$€a@ ‘3r simyidtions 13 e I'si.sied 7 ~eal S¥CT720 8

wnen - < ¢ pz T3 -educe <. Yy Crif

%3 suoie <o,
nen .- > < Such 1 scAeme -3 amoiQved Irimartiy “or

‘ts aase 'n MOiementat-on. lur "ain 3lecIive tere '3y s

semonstrate -te 0CaNnCTal ind ne ::aaa"

/arying ::n:rol'!r 3 sve+d Tore 54 sTacIzry -esIgnse “Tan

smat 3% 3 TTme=ravarcant int Tar
M. Ixamoie an@ livy.atUin esu. s
A =31t ~200C “ANIQUIATIF ACWA N Sr3. 0 s usea

3S 1n examoie I3 evaiuata “he sertarmances if IInze3’ler

@813 TIACEOTS Z@SCTCZed ‘n ThYY Cdoder

“he l-:stnt sanvsyiator f Tig. 13n81838 3T ne
revQoiutd [2'1n% dnd TwQ 3rosmMati: 3ints. “he ~2firy (3InT

FotaTes ‘N TTE kv 3iane (3'nT .artap0i? 3. lne 3f

IPTSMACIC (OINTS 41lGws M@ Nang 13 xRN~ TR s D-ane
LJOINT sartaple ») «ndle INe dTrer TetS IR AN ITins.are

aiong

2=ax13 { 91nC carradre I). n

~23C%13 2Quat:icns

snd z3ntrailer 1eS1GN Dased 30 “eedback IneartIiTiif ana

me<varyIng "eeABack JAINS dre :MITIed Tere jue I3 ack 7

space. Their zeCidris zan 3e “sung ca D3} Car

Towing daramecers: M. iy, M. Jkg, t=m, §'=4OCf= {ar N}

181, 2, 1 ‘ar z3roue or ‘orce imits, e simuiatad

-] «gtians *rem (yaim, 3sdrag, IT-im) 3 (yaN.fm,

92-0.5rad, 2t+0.23). The resuits are snown 'n Tanle [ ana

Figures 2. J. ina 3. These resuits ~nen Iinoared -1t
*hose .s$17g  ZIMOUTQ tIrcue lacnniiue’ Ir ‘pectacx irear-
YZACION «41TN CNSTANT STALE "ReGSACX $NOW "WC? TTRrIVements
A convergence ZiMe, STRAAY-3TATE 4CCuUriCy dnd lantron
effares. (See TaDles 2 ina 3.}
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Thus coaditions | and 3 of the feedback theorem are satisitled.
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Also C(P) = R°. Thus, dim C(P) = 6, which makes condicion 3 :rue.

System (A5] 1is then feedback equivaleat to the following
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where Hps Uy and My are new free controls. Agailn, the raal
i valued functions hl’ hz, h3 are chosen as:
hl(x) = x,
- = (A1d
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which leads to an identity coordinate change. The feedback o
‘ controls u u, and u are given by: :::
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Some New Thoughts on Control Design Strategies

Min Yen Wu and M. F. Chouikha
Department of Electrical and Computer Engineering
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Boulder, Colorado 80309

ABSTRACT

This paper descnbes some of our thoughts on future control
Jesign strategtes. The controller design is viewed as a general
decision making process. To control complex systems where
nrecise dynamical models are not available, intelligent control
-nouid be used. An intelligent controller 1s 2 knowiedge-based. rule-
hased. hierarchical conaotler with vanable structure. [t optimizes
mulupie objecnves with constraints. It facilitates tts decision making
nyv control enrnichment and observation enrnichment. It has memory
and 15 capable of learming from its expenences. Heunsuc and
vualitauve rules are consudered to be more important than quantitative
and deductive methods in such decision making. As such, input-
output (cause-etffect) characterization of dynamical system is
emphastzed. Design of such ntelligent controller calls for the
possible integration of arificial intelligence and operational research
with the control theory. Finally, it 1s suggested that integrated
control design. which considers jointly the plant, actuators. sensors
and controller at the outset of control design, should replace the
current approach of designing a controlier for a given piant.

[. Introduction

The majonty of control design theones today require rather
precise information on the parameters of the plant to be controlled.
Most of the controller design is based on the system parameters such
15 poles, zeros or eigenvalues. In the case of linear systems, very
often we begin with the system descniption of X = Ax + Bu, y = Cx
+ Du or uts ansfer tunction G(s). The desired system response is
charactenized in terms of desired pole - zero pattern, desired
eigenvalues, or opumization of performance index. Controller is
then designed through the use of the pole-zero cancellanon (1-2],
loop shaping [2-3], state feedback (4-6] or performance index
opumtzation | 7-8]. In almost every case. the precise information of
the plant parameters, such as poles and zeros of G(s) or the matrices
A, B and C, must be known 1n order to design the controller. [n the
case when plant parameters are not known, system idenuficanon (5]
must be done first before the controiler design can proceed. In the
frequenacy-domain design, pole-zero informauon on the plant 1s
needed for pole-zero cancetiation and loop shaping. In the ume-
Jomain design. matnces A, B and C are needed for checking the
controllabtlity and observability and for compuang the gain matnces
for state feedback and state esumator. They are also needed in the
solution of matnx Riccan equation in the optimal control design. In
other words, exphicit and precise information of system parameters 1s
indispensable 1n most currenty available controller design methods.
in practice, many control systems, such as robotic systems n
manutactunng, the discrete-event sysiems in production lines, the
large structure controi in space and the sOC10-ecoONOMIC systems, etc.
often lack precise dynamucal models due to complexity of the
system. high dregree of nonlineanty, large uncertainty, large
parameter vanations and tme-varying parameters. It s becoming
more apparent that conventional controlier design theones are either
inadequate or impracucal for dealing with control of such systems.
Theretore, new thinking, new approaches, and possibly new tools
will be needed If we are going to control complex systems
effectively. With the advent ot learning theory 1n psychoiogy,
arufictal intetligence 10 computer science, operanonai research in
optimization and the generalization of control theory into a broader
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decision-making theory, a new field of intelligent control has
emerged [8-9]. This profound change 1n controi concept undoubtly
will drasucally change our future conurci design srategies  In this
paper, we would like to present somne ot our thoughts on controi
design issues.

[I. An Inspiration

Before we proceed to discuss varous control strategies, let
us first take a look at a well known control problem in our daily life.
namely dnving of a car. In car dnving, the human s the conwoller.
In fact, it 1s an 1ntelligent controiler. When we decide to go from
point A to point B by way of car, we first find out when we have to
get there and then oy to drive there the best way we can. This may
sound ‘easy. However, it needs the best dnving skill from an
intelligent driver. When we say “the best way~ it means somewhat
differently from what 1s convenuonally used in opumal control
theory. To go from A 10 B in "a best way” may mean to take the
shortest path to get there in minimum time, with miymum energy
cxpenditure and to have a smooth and most enjoyable drive, etc. In
other words, intelligent control often has to deal with fuzzy system
requirements, to work with multiple objectives and to opumze
performance indices which may not be opumal in stnct mathemancal
sense. To choose the shortest path, the driver must know how many
different paths are available and their respective lengths. To dnve
there in minimum ume, he needs 10 go at maximum speed with
constraints on speed limit and Taffic and road conditons. To dnve
with minimum energy he needs good dnving control of the car. So
an intelligent conwoller should have a good task planning if it1s
going to have good control saaiegy. To have good task planning, it
needs good knowiedge base which comes from instructions or
acquires through learning expeniences. As to the actual control of the
moving vehicle, a good control law generated by the controiler (the
dnver) 1s needed.  With the current control method, we would have
to have a dynamical model with known parameters tor the car we are
dnwving, i.c. some differennal equations charactenzing the dynamics
of the car on the road. With this parameter \nformauon. we wiil then
figure out the gain matnx for the state feedback or the controller
poles and zeros so that a sausfactory control law can be generated.
As we know, when we drive we never bother to find out what are
the dynamucal equanons, (the state equanons or the transter funcaon)
we are working with. If we had this information, we might be able
to dnve the car simply with the gas pedal control. f this were the
case. then very few of us will be able to be a sanstactory driver
tbecause the control strategies wiii be too complicated!). Of course,
the car was not designed to be contolled by the gas pedal alone
(even though the speed and direction ot the car can be controlled by
the gas pedal aione 1f we know the dynamical equations which
accounts for the slope or curvature of the road). As we have seen,
the single input control can be very inetfecuve in a complex control
environment. To make control strategies simple and etfectuve. we
should expand our means of controlling the system. In the case of
the car, we incotporated the brake and the sicenng wheel. The brake
1s to control the vehicle speed more etfecuvely by providing tast
deceleration, and for deceleration only. The steenng wheel allows
etfecave change of vehicle direction without the need of resorting to
proper acceleration and deceleration which require complex
computations nvolving the dyanmical equations and the
disturbances. The above observanons suggest that ettective control
can be achieved more etfecuvely by expanding the control capability
of the system. namely through the control eanehment strategy  Now
let us tum to the question ot decision making tn the controiler To
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decide when, and how much 1o apply to the gas pedal, the brake or
the steering wheel, the dnver (human controlier) just like 1n many
conventional controllers, makes his decision based on his
interpretagon of the eryor signals (such as how close 1s the car from
the side lines of the road. how close 1s the car in the front, how
much 1s the speed, how curvy is the road, etc.). In the interpretation
of error signais, the driver focuses his attennon first on the polanty
ot the error and then on the quanutative aspects. In other words, the

2, Jdnver focuses pnmanly on qualitauve aspects ot the error signals o
> heip him decide whether he should step on the gas pedal (to speed 1t
' up) or on the brake (10 slow it down), whether to tum to the nght or

10 tum to the left. The quanutanve control such as how much to
change the speed or the dircuon, though important, tends to be more
gradual and is of secondary imporance 1n nature.

[ The above observanons suggest that although both the
polanty and the magnitude of error signal shoud be taken into
consideration in desigming control strategies, clearly there should be

- 1 difference in their pnonty ranking. The error polanty is more
- important than the error magnitude. There scems to be very httle
- compromise on error poianty 1n decision making. Nevertheless,

‘here appears 10 exist a great deal of flexibility for reducing the ror
magmtude. [t 1s also to be noted that generations of good conuoi

. law requires good observanons and feedback. Good dnving
C'; requires good front, rear and side views from inside of the car.
t"_ Theretore, 10 have good control strategy, the controller can use as

many sensor teedbacks as possible. This calls for the gbservauon
snnchment. By observaunon enrnichment, we mean to expand our

observaton capability. It does not aecessanly call for the use of
TXIra sensors.

For example, what we see tn the rear view maror about the
car approaching from behind provides not only the distance
:nformation, but also the speed information (which is denved from

y the rate the distance is changing). Ths information can be used by
" the dnver for speeding up the car or for changing lanes. This form
S of indirect feedback informaton (denving both position and speed

information from vision) does cail for enhanced informatnon
processing capability. Some inteiligent sensor capable of
Y information processing should be a part ot the intelligent controiter.
E What has been discussed so far, such as controiler input ennchment

(observation ennichment of the ptant), conmroiler output ennchment
vonzol ennchment of the plant), prionty ranking in decision making
ipolarity over magmtude, qualitaive over quanutatuve in the

. interpretation of error signal) are simpler to address than the more
- difficult problem of addressing the issue of correcting the error
. magnitude (the quantitative aspect). As we mentioned earhier, there

seems 10 be a great deal of flexibility for reducing the error even atter

the error polanty has been determined. To reduce the error

magnitude we have to work within the consmamt of the control law.

Too much and too little correction for the error magnitude is equally

4 unsaustactory They may cause instability. Therefore, one basic

consideration 1n controller design is to ensure the systems stability.

Even if the conmrol acnon results in a stable response, 100 much

correction will cause overshoot and too little acuon will have a very

- sluggish response. So an intelligent controller shouid arbimrate
L. stabtlity and other pertormance contlicts.

To attain opumal performance in an ever changing
environment, the controller ought to be ume-varying and adapuve.

F, Unfortunately. such aume-varying controller can not be designed with
" conventional methods because system parameters model 1s lacking.
re [t appears that a viable approach will be a heunsnc, ruie-dnven

contoller that can be fine tuned.

~ [I. Some Thoughts on Control Design Strategies
As was pointed out earlier, 1t is either impossible or
impractical 1o have a precise dynamical model of a complex system.
Theretore the control design strategies tor such systems also calls for
. changes trom conventional aprroaches which rely heavily on a
A purelv deductive mathemauncal giscipline, Given below are some of
our thouyhts on what shoutd be when we design control systems.

Vo 1. Place less emphasis on the need of charactenzing the svstem
" with a precise mathematical model with known parameters
b Instead. attention should be focused on a better understanaing of
the system inpuvoutput (10 relationship - In other words. the
svstem 18 tabe charactenzed more exolicitly in terms of 1S cause
F. and ettects relationsnip  More precisely speaking, it 1s more
-

Chaats 3 . - - 3 "
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impornant 1o have a good understanding of what the inputs will e
do 1o the outputs. So quaintative ue. physical) descrniption ot '
the system 1s more important than the guanutative 'ie :.'.
mathemaucal) descnption of the system. Mathemaucal modef 1§
needed mainly for the basic operauon of the system, and hence,
better 10 have the model as simple as possible. As such, lumped .":\.
1/0 charactenzauon (e.g. quaditanve cause-effect. relauonship or AN
transfer funcuon) will be preferred to the state space LY
charactenzation. R
P
2. Single-mnput singie-output {SISO) system design should be .':\
replaced by muluple-input, mulnple-ourput {MIMO) design if -:_s

needed through control ennchment and observanon ennchment
of the system. [t is well known that an uncontroilable or an
unobservable system can be made to be controllable and
observable through expansion of control capability or
observanon capability. The mulnple controis should be made 10
be as independent as possible. This conaol-decoupling property
will render more wansparent [/O charactenzation and hence
facilitate the decision making of the controiler. The muinple-
obervations of the system should be closely refated 10 allow
accurate and reliable assessment of the system state for
intelligent decision making. [n some apphicanons, remote
control and remote (non-contact) sensing {(as in space, nuclear
and robots applicauons) should also be explored. Indirct
sensing ti.e. multiple informaton obtained from sigrai
processing of a single observed informauon, e.g. vision may
provide position as well as velocity informanon) may provide
versaule and effecave observaaon.

3. Future controllers can be an inteiligent controiler. The
controller will have data base for storing commands (on task
requirements) and rule-based algonthms (either preprogrammed
or accumulated from expeniences). it has memory for stonng
past informaton for learning from expenences. The decision
making of the controller will be an expert system which consists
of a coilection of basic decision makers. The control law
generated by the conwoller 1s a collecuve etfort of each
individual decision maker whose participanon or not is decided
intelligently 1n a tme-varying manner based upon rule-based
interpretations of the observed intormation and system
requirements.

v
-

4. Ruled-based decision making will be a cdmbinauon of '.::“ :
qualitauve tlogical) and quantauve (computational) nature. A oy
muxture of heunstic as well as deductive decision processes. In '_\
a hierachical decision process. the qualitatve decision ti.e. Y

which way the correction of error has to be) will have ;.\'
precedence over that of quantitative decision (1.e. how much the -~ W

error correction 1s (0 be made). The quanatative decision will
be a ume-varying process. [nstead of being a continuousiy
varying process. a more pracncal way appears to be piecewise-
constant ttme-varying process. In other words, the parameters
of change are a set of finite values and the:r values will be

changed at discrete 1nstant of umes decided by rule-based Ny
algonthms.
5. Rule-based algorithms are designed to ensure the stability of e
the system and are used to arburate conflicting performance
requirements over different intervals of overall operanion for ®
maximizing the total pertormance. )
. -
6. An intelligent controller must be capable of learing tfrom '::‘.'
expeniences and of opurmzing performances in 1 given set of RS
conditions. Therefore. an intelligent controtler will be a Ma
combined cffort of applying results tfrom Aruficial Intelligance .":'l. '
(AD), Control and Signal Processing (CSP) and Operational Y
Reserach (OR). -

7. The advancements of computer technology are making

intelhigent controllers more teasible. ,-::
8. Integrated system design concept should be developed. To ":-"
design an intelligent control system considerations for plant. o
control capability, tactuator technology) observauon capabihity '{.“"
(sensor technology), and controller decision making all need to oy
be addressed at the outset. Conventional control approach ot S

staring wath a given plant and then working to find a1 needed
compensator (controllert 1o ensure saustactory pertormance
should be discouraged. Instead. we should aiwavs ask the
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uestion of "how to have the ‘best’ control sysiem ('best
»ystem' 1s not meant to be an opumal system in the raditional
<ense) for the tasks to be accomplished?”

Y. We need better understanding on learming theory, ume-
varying and/or nonlinear contol theory.

Shuwn in figures 1 and 2 are possible configuratnons of
control systems with intetligent conollers.

[V. Examples

Given below are two examples on controller design based on
combination of heunstic as well as deductive reasoming. They are
iound to produce much better performances than those designed with
.onventional design method.

Figure 3 shows the step response ot a double-integrator that
sroduces a fast response without causing any overshoot. The
controller 1s a simple gain scheduling scheme designed by dynamic
nole placement argument {10}. It 1s based on good qualitauve
wnderstanding ol the effects ot velocity loop (that atfects the
jamping) and the position loop (that affects the bandwidth) on the
system response.

Figure 4 shows the improvement of convergence of a
learming congotler. The conwoller incorporates a combinauon of two
separate leaming algonthms operating over two different intervals of
operauons. The learming algonthm | applies only to linear system
[11] which diverges when applied to a noniinear system. The
learing algorithm 2 [12] applies to some nonlinear system. but
converges siowly. By using learming algonthm 1 for start up and
then switching to algonthm 2, 1t 1s found that convergence rate for
nonl.near system improves significantly.

More and more intelligent controllers using expert systems
have begun to emerge. Real-ume expert systems for desalinization
svstem and robot ping-pong game have been reported recently by
Reliable Water Inc. and AT&T respecuvely. Without any doubt,
intetligent control will be used more and more 1n the future for
control of complex systems.
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Learning algorithm for control systems®

M. F Chouikha and M. Y. Wu
Department of Electrical and Computer Engineering
University of Colorado
Boulder, O 80309-0425

Abstract

The case of controlling dynanmucal systems with
nnknown or partally known dynainics which are required
s repeatedly track a desired trajectory over a finite tune
nterval 13 of great iterest w practice. (Jne possible ap-
wroch to solve such problem is the apphcation of adap-
tation and learming 1n automalic systems. Tius paper
presents a method of designing a learning controller based
on the representation of the mput-output signals by a set of
sethogonal functious. Two theorems concernming the learn-
ng strategies i the design of the controlier are given.
They extend the resuits of S.Arunota’s betterment pro-
cesses 1n the sense that sowne less restnictive conditions for
convergence are needed. Examples are also given to llus-
trate the results. Potentsal applications to robot inamipu-
lator controi are also noted.

1. Introduction

In practice. we often face the problem of control-
ling dynamical svstems with incomplete or Lttle aprion
\nformation about the piant. The solution is usually based
on the application of adaptation and learning in automatic
svstems which reduced smitial uncertainty by using the in-
formation obtained during the process of control. Due to
the availability of an ever-increasing computational power,
many adapuive and learning algorithms have emerged and
numerous succesful applications have been reported |1} and

{0l Recently a learming control algonithm called better-
ent process was proposed by S.Arimoto et al. 2] to solve
“lie particular but in practice very important case of con-
trolling sytems with unknown or partiaily knowa dynamics
wlich sre required to repeatedly track a desired trajec-
tory. The iterative approch taken by Arimoto et al. 13
based on a simple algorthm which updates the input to
the system based on the previous input and a function of
the mifference between the previous output and the desired
trajeciary. However, this method is limited to a certan
classes of svstems and 15 applbeable under certain rather
restricted conditions. In tius paper an aiternative approch
based on the representation of input-output signals hy a
set of orthogonal functions 1s presented. Orthogonal func-

Tlius work i supparted in part by the Utfice of Naval Research

nnder contract NOOUTL. &4 K 0425

128-014

tions such as the complex exponentiais, the Walsh func-
tions etc... are attractive primarly because of therr poten-
tial of signal characterization with definite advantages in
computational aspects :11|

2. Main results

In what follows we shall consider the linear time
invariant single-tnput single-output system defined by v
= L{u) where u, y are the system input and sytem nu.\pU‘(
respectively and L 1s a linear operator We also consder
the following iteration formulas fur input 1 the learning
process:

Baeail) = uatl) « veut) (1.1
or
d
Ukertl) = uplt) + b —{e, 1} B
ot
and the error
Celt) = yalt) - yuit) 113

where uy(t) and yait) are respectivelv the iput and the
output of the system for the k-th iterauion, yqit) 1s some
@iven function and ~, 4 are some constants. [he probiem
is then to find conditions that ensures

yalt] — yq(t}ss b — o
in some sense, for all { 1.e
lew(t)l — 0 as k — ac for all t

for some chosen norm.
Definition

The function fit) = flc, N.®) dehined in the in-
terval (¢ £3] is sad ta be an ¢ -approxrmation of a qiven
function {(1) on the intervai 1, , {7/, with respect to a chosen
set of orthogonal functions described by the vector vajued
function: '

® = 01(t),010t), 2908}, . Galt)T

if for & given pomitive ¢ there exists & number N such that
for all vin 8y, 14

Y- ficlorn >V

!n this paper (gl denotes the L2-norm of a square
integrable function g(t) defined on the interval Lty by

1?2
‘g[:‘/ glinde! ? Y
]
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! Let the real valued function f(t) be square-
integrable on the interval it,,t;, then the ¢ -approxunation
, of fit) 18 given by
i
~ fity =S o) (1.5)
i 1=1
N
where
ca=v/ke =125 11.6)
- a
e n=f fi)oqn) dt
Y (L7
k, = / Sltdt
:‘- 1
I‘: The main resuits of the learning process will be given
the following two theorems without proof. The proof can
he found i ‘91
‘o Theorem 1.
:-'. Let y4(t) be a qiven desmired trajectory defined
- aver a Lime serval {t),1;} and let euit) be as defined in

11.3) and é4(t) be its ¢ -approxamation with respect to $.
T Also let
P Li#) = Po
- wnere P 1s a .V « .V constant matnx, and L is the Linear
operator representing the system. Then

11.8)

r léqg) — 0 ask — (1.9

if and only of

i (tr{ PYY

where P L and 1rP are the Forbenious norm md the trace

of P rrspecuvely

> (N - DIPIE (1.10)

v It 1s noted that condition {1.10] is somewhat re-
strictive and may not be satisfied for certain class of linear

. systems. This condition can be relaxed by the following

g theorem.

e Theoremn 2.

For the problem considered in theorem | and a
given desired trajectory yatt) defined over the time 1aterval
. t1.ts], and for a given set of orthogonal functions defined
,\. by the vector valued function @ if there exists a constant
h N .+ ¥V matnx Q which satisfies the {ollowing coudition

x H-QPTp <1 (111

then
sl — 0 as k — 2

:"_' {‘omments

. 1. The generalization of theorem 1 and theorem 2 Lo the
case of multi-dimensional linear systems 1s straight

- forward.

»e 2. The computational complexsty of the lesrning algo-

r:' rithm may depends on the types of the orthogonal
functions chosen 1 the ¢-approximation.

3. I P 1s nonsingular then the best choice for Q is

Q=pT

——

2%
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12} that using the {eedback iin-
eanzation lechnique an n-joint robot manipulator can
be transformed to a set of n decoupled second order
linear time-invariant systems. therfore the learning ai-
gorithm presented in thus paper can also be appled to
a certain class of nonlinear systemns, such as robot ma-
nipulator control systems.

4. It has been shown

P AR

3. Examples
The illustration of the two theorems presented 1o this

paper is given in the {ollowing two examples :

Example 1

The appiicability of the result of theorem | 1s ilus-
trated in this example. Consider the first order inear time
invanant system describea by the following transier func-
tion:

+~ .89

~0.9

For easy checking with analytic result let the desired out-
put yg(t) bed

Fls) = 100

ARSI

ya(l) = J46410¢ - 0.73205

YRy

which can also be written as in (1.5}

yalt) = c1o1(t) + cad3tt)

where
Cy =1
cy =1
and
aiit) =1

Sat) =23t - 3

are two Legendre functions. Iu this case N = 2 and
P 99.62 - 19
19 99.94

the condition (1.10) 1s satisfied and the algorithm (1.1}
converges in 2 iterations as it 1s shown in figure 1.

Example 2
Consider the following system:
z=Az + Bu
- 12,11
y==_Lzx
where
[n]
r =
t)j
o 1 ] .
A"{-l _21 B—{l? C=1 0

and the desired vutput s




.

IR (2.

tor tn 0. 1. For this svstem the condition (1.10) of the-
atem | o1s not sausned, liowever v chousing a set of 5
Legendre {unctions with a matnx

r-100.58 17704 -!u6.63 190.80
s S !7.6.70 '.!—SOP -272.10 102.15
¢ ¢ -165.30 270.66 -304.30 Jl1l1U |
- -190.70 29910 -308.60 230.50.

for which condition (1.11) is saushfied, yiit) converges to
- 741 ) in 4 iterations as it is shown in figure 2. We notice also
Ve hat since in tlus example C 8 = 0. the conditions for the
convergence of the (''-type betterment as has been shown
i Ji, b are not saustied. Figure J shows the divergence

('.:, of yett) from the desired trajectory ygit) as the number
A of iteration k gets larger. However, for a system with the
same matrices 4 and B as the system considered m tius
~xample but with matrix C equal to :
>
\J' 0
" C = | i
\"’
“he ("' -type Letterment converges as it is shown in figure
>, i
f
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